
Adaptive Social Behavior Optimization (ASBO): Zweiphasige Entwicklung
Wir beschäftigen uns weiterhin mit dem Thema des Sozialverhaltens von Lebewesen und dessen Auswirkungen auf die Entwicklung eines neuen mathematischen Modells - ASBO (Adaptive Social Behavior Optimization). Wir werden uns mit der zweiphasigen Entwicklung befassen, den Algorithmus testen und Schlussfolgerungen ziehen. So wie sich in der Natur eine Gruppe von Lebewesen zusammenschließt, um zu überleben, nutzt ASBO die Prinzipien des kollektiven Verhaltens, um komplexe Optimierungsprobleme zu lösen.

Generative Adversarial Networks (GANs) für synthetische Daten in der Finanzmodellierung (Teil 1): Einführung in GANs und synthetische Daten für die Finanzmodellierung
Dieser Artikel stellt Händlern Generative Adversarial Networks (GANs) zur Generierung von synthetischen Finanzdaten vor und geht dabei auf die Datenbeschränkungen beim Modelltraining ein. Es behandelt GAN-Grundlagen, Python und MQL5-Code-Implementierungen und praktische Anwendungen im Finanzwesen, die es Händlern ermöglichen, die Modellgenauigkeit und -robustheit durch synthetische Daten zu verbessern.

Neuronale Netze im Handel: Szenenspezifische Objekterkennung (HyperDet3D)
Wir laden Sie ein, einen neuen Ansatz zur Erkennung von Objekten mit Hilfe von Hypernetzwerken kennen zu lernen. Ein Hypernetwork generiert Gewichte für das Hauptmodell, wodurch die Besonderheiten der aktuellen Marktsituation berücksichtigt werden können. Dieser Ansatz ermöglicht es uns, die Vorhersagegenauigkeit zu verbessern, indem wir das Modell an unterschiedliche Handelsbedingungen anpassen.

Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs entwickeln und testen (III) – Adapter-Tuning
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Nachbarschaftsübergreifende Suche (ANS)
Der Artikel zeigt das Potenzial des ANS-Algorithmus als einen wichtigen Schritt in der Entwicklung flexibler und intelligenter Optimierungsmethoden, die die Besonderheiten des Problems und die Dynamik der Umgebung im Suchraum berücksichtigen können.

Neuronale Netze im Handel: Verwenden von Sprachmodellen für die Zeitreihenprognose
Wir untersuchen weiterhin Modelle zur Zeitreihenprognose. In diesem Artikel machen wir uns mit einem komplexen Algorithmus vertraut, der auf der Verwendung eines vortrainierten Sprachmodells basiert.

Archery-Algorithmus (AA)
Der Artikel wirft einen detaillierten Blick auf den vom Bogenschießen inspirierten Optimierungsalgorithmus, wobei der Schwerpunkt auf der Verwendung der Roulette-Methode als Mechanismus zur Auswahl vielversprechender Bereiche für „Pfeile“ liegt. Die Methode ermöglicht es, die Qualität der Lösungen zu bewerten und die vielversprechendsten Positionen für weitere Untersuchungen auszuwählen.

Artificial Showering Algorithm (ASHA)
Der Artikel stellt den Künstlichen Duschalgorithmus (ASHA) vor, eine neue metaheuristische Methode, die für die Lösung allgemeiner Optimierungsprobleme entwickelt wurde. Auf der Grundlage der Simulation von Wasserfluss- und Akkumulationsprozessen konstruiert dieser Algorithmus das Konzept eines idealen Feldes, in dem jede Einheit der Ressource (Wasser) aufgerufen ist, eine optimale Lösung zu finden. Wir werden herausfinden, wie ASHA Fließ- und Akkumulationsprinzipien anpasst, um Ressourcen in einem Suchraum effizient zuzuweisen, und seine Implementierung und Testergebnisse sehen.

Neuronale Netze leicht gemacht (Teil 97): Modelle mit MSFformer trainieren
Bei der Erforschung verschiedener Modellarchitekturen wird dem Prozess des Modelltrainings oft nicht genügend Aufmerksamkeit geschenkt. In diesem Artikel möchte ich diese Lücke schließen.

Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)
Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.

Neuronale Netze im Handel: Verringerung des Speicherverbrauchs mit der Adam-mini-Optimierung
Eine der Möglichkeiten zur Steigerung der Effizienz des Modelltrainings und des Konvergenzprozesses ist die Verbesserung der Optimierungsmethoden. Adam-mini ist eine adaptive Optimierungsmethode, die den grundlegenden Adam-Algorithmus verbessern soll.

Wechselseitige Information als Kriterium für die schrittweise Auswahl von Merkmalen
In diesem Artikel stellen wir eine MQL5-Implementierung der schrittweisen Merkmalsauswahl vor, die auf der wechselseitigen Information zwischen einer optimalen Prädiktorenmenge und einer Zielvariablen basiert.

Merkmalsauswahl und Dimensionenreduktion mit Hilfe von Hauptkomponenten
Der Artikel befasst sich mit der Implementierung eines modifizierten Algorithmus der „Forward Selection Component Analysis“, der sich auf die von Luca Puggini und Sean McLoone in „Forward Selection Component Analysis: Algorithms and Applications“ vorgestellte Forschung stützt.

Atmosphere Clouds Model Optimization (ACMO): Die Praxis
In diesem Artikel werden wir uns weiter mit der Implementierung des ACMO-Algorithmus (Atmospheric Cloud Model Optimization) beschäftigen. Wir werden insbesondere zwei Schlüsselaspekte erörtern: die Bewegung von Wolken in Tiefdruckgebiete und die Regensimulation, einschließlich der Initialisierung von Tröpfchen und ihrer Verteilung auf die Wolken. Wir werden uns auch mit anderen Methoden befassen, die eine wichtige Rolle bei der Verwaltung des Zustands von Wolken und der Gewährleistung ihrer Interaktion mit der Umwelt spielen.

Neuronales Netz in der Praxis: Das erste Neuron
In diesem Artikel beginnen wir damit, etwas Einfaches und Bescheidenes zu bauen: ein Neuron. Wir werden es mit einer sehr kleinen Menge an MQL5-Code programmieren. Das Neuron hat in meinen Tests hervorragend funktioniert. Gehen wir in dieser Artikelserie über neuronale Netze ein wenig zurück, um zu verstehen, wovon ich spreche.

Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken
Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.

Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5
In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Klassifikatoren in MQL5 vor und erörtern ihre Wirksamkeit in verschiedenen Situationen.

Atmosphere Clouds Model Optimization (ACMO): Theorie
Der Artikel ist dem metaheuristischen Algorithmus der Optimierung des Atmosphärenwolkenmodells (ACMO) gewidmet, der das Verhalten von Wolken simuliert, um Optimierungsprobleme zu lösen. Der Algorithmus nutzt die Prinzipien der Wolkenerzeugung, -bewegung und -ausbreitung und passt sich den „Wetterbedingungen“ im Lösungsraum an. Der Artikel zeigt, wie die meteorologische Simulation des Algorithmus optimale Lösungen in einem komplexen Möglichkeitsraum findet, und beschreibt detailliert die Phasen des ACMO-Betriebs, einschließlich der Vorbereitung des „Himmels“, der Wolkenentstehung, der Wolkenbewegung und der Regenkonzentration.

Neuronale Netze im Handel: Transformer für die Punktwolke (Pointformer)
In diesem Artikel geht es um Algorithmen für die Verwendung von Aufmerksamkeitsmethoden zur Lösung von Problemen bei der Erkennung von Objekten in einer Punktwolke. Die Erkennung von Objekten in Punktwolken ist für viele reale Anwendungen wichtig.

Anwendung der lokalisierten Merkmalsauswahl in Python und MQL5
In diesem Artikel wird ein Algorithmus zur Merkmalsauswahl untersucht, der in dem Artikel „Local Feature Selection for Data Classification“ von Narges Armanfard et al. Der Algorithmus ist in Python implementiert, um binäre Klassifizierungsmodelle zu erstellen, die in MetaTrader 5-Anwendungen für Inferenzen integriert werden können.

Tabu Search (TS)
Der Artikel behandelt den Algorithmus Tabu Search, eine der ersten und bekanntesten metaheuristischen Methoden. Wir werden die Funktionsweise des Algorithmus im Detail durchgehen, beginnend mit der Auswahl einer Anfangslösung und der Untersuchung benachbarter Optionen, wobei der Schwerpunkt auf der Verwendung einer Tabu-Liste liegt. Der Artikel behandelt die wichtigsten Aspekte des Algorithmus und seine Merkmale.

Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)
Wir laden Sie ein, die Methode Hierarchical Vector Transformer (HiVT) kennenzulernen, die für die schnelle und genaue Vorhersage von multimodalen Zeitreihen entwickelt wurde.

Optimierung mit der bakteriellen Chemotaxis (BCO)
Der Artikel stellt die ursprüngliche Version des Algorithmus zur Optimierung der bakteriellen Chemotaxis (BCO) und seine modifizierte Version vor. Wir werden uns alle Unterschiede genauer ansehen, mit besonderem Augenmerk auf die neue Version von BCOm, die den Mechanismus der bakteriellen Bewegung vereinfacht, die Abhängigkeit von der Positionsgeschichte verringert und einfachere mathematische Verfahren verwendet als die rechenintensive Originalversion. Wir werden auch die Tests durchführen und die Ergebnisse zusammenfassen.