Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)
In diesem Artikel werden wir uns mit dem Algorithmus befassen, der von allen bisher diskutierten Algorithmen die umstrittensten Ergebnisse zeigt - der Algorithmus der differentiellen Evolution (DE).
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung
In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.
Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5
Modelle des maschinellen Lernens sind schwer zu interpretieren, und das Verständnis dafür, warum unsere Modelle von unseren Erwartungen abweichen, ist von entscheidender Bedeutung, wenn wir einen Nutzen aus dem Einsatz dieser fortschrittlichen Techniken ziehen wollen. Ohne einen umfassenden Einblick in das Innenleben unseres Modells könnten wir Fehler nicht erkennen, die die Leistung unseres Modells beeinträchtigen, wir könnten Zeit mit der Entwicklung von Funktionen verschwenden, die nicht vorhersagbar sind, und langfristig riskieren wir, die Leistungsfähigkeit dieser Modelle nicht voll auszuschöpfen. Glücklicherweise gibt es eine ausgeklügelte und gut gewartete Komplettlösung, mit der wir genau sehen können, was unser Modell unter seiner Haube macht.
Algorithmen zur Optimierung mit Populationen Fledermaus-Algorithmus (BA)
In diesem Artikel werde ich den Fledermaus-Algorithmus (Bat-Algorithmus, BA) betrachten, der gute Konvergenz bei glatten Funktionen zeigt.
Algorithmen zur Populationsoptimierung Optimierung mit invasiven Unkräutern (IWO)
Die erstaunliche Fähigkeit von Unkräutern, unter verschiedensten Bedingungen zu überleben, wurde zur Idee für einen leistungsstarken Optimierungsalgorithmus. IWO (Invasive Weed Optimization) ist einer der besten Algorithmen unter den bisher geprüften.
Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung
Wir setzen die Untersuchung der Umgebung in Modellen des verstärkten Lernens fort. Und in diesem Artikel werden wir uns einen weiteren Algorithmus ansehen – Go-Explore. Er ermöglicht es Ihnen, die Umgebung in der Phase der Modellbildung effektiv zu erkunden.
Neuronale Netze leicht gemacht (Teil 48): Methoden zur Verringerung der Überschätzung von Q-Funktionswerten
Im vorigen Artikel haben wir die DDPG-Methode vorgestellt, mit der Modelle in einem kontinuierlichen Aktionsraum trainiert werden können. Wie andere Q-Learning-Methoden neigt jedoch auch DDPG dazu, die Werte der Q-Funktion zu überschätzen. Dieses Problem führt häufig dazu, dass ein Agent mit einer suboptimalen Strategie ausgebildet wird. In diesem Artikel werden wir uns einige Ansätze zur Überwindung des genannten Problems ansehen.
Kategorientheorie in MQL5 (Teil 22): Ein anderer Blick auf gleitende Durchschnitte
In diesem Artikel versuchen wir, die in dieser Reihe behandelten Konzepte zu vereinfachen, indem wir uns auf einen einzigen Indikator beschränken, der am häufigsten vorkommt und wahrscheinlich am leichtesten zu verstehen ist. Der gleitende Durchschnitt. Dabei betrachten wir die Bedeutung und die möglichen Anwendungen von vertikalen natürlichen Transformationen.
Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)
In früheren Arbeiten haben wir immer den aktuellen Zustand der Umwelt bewertet. Gleichzeitig blieb die Dynamik der Veränderungen bei den Indikatoren immer „hinter den Kulissen“. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, mit dem Sie die direkte Veränderung der Daten zwischen 2 aufeinanderfolgenden Umweltzuständen bewerten können.
Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen
Dieser Artikel, der Teil einer größeren Serie über die Implementierung der Kategorientheorie in MQL5 ist. Er befasst sich mit Funktoren. Wir untersuchen, wie eine lineare Ordnung mit Hilfe von Funktoren auf eine Menge abgebildet werden kann, indem wir zwei Datensätze betrachten, bei denen man normalerweise keinen Zusammenhang vermuten würde.
Neuronale Netze leicht gemacht (Teil 31): Evolutionäre Algorithmen
Im vorangegangenen Artikel haben wir uns mit nicht-gradientenbasierten Optimierungsmethoden befasst. Wir haben uns mit dem genetischen Algorithmus vertraut gemacht. Heute werden wir dieses Thema fortsetzen und eine andere Klasse von evolutionären Algorithmen besprechen.
Neuronale Netze leicht gemacht (Teil 33): Quantilsregression im verteilten Q-Learning
Wir setzen die Untersuchung des verteilten Q-Learnings fort. Heute wollen wir diesen Ansatz von der anderen Seite her betrachten. Wir werden die Möglichkeit prüfen, die Quantilsregression zur Lösung von Preisvorhersageaufgaben einzusetzen.
Neuronale Netze leicht gemacht (Teil 53): Aufteilung der Belohnung
Wir haben bereits mehrfach darüber gesprochen, wie wichtig die richtige Wahl der Belohnungsfunktion ist, mit der wir das gewünschte Verhalten des Agenten anregen, indem wir Belohnungen oder Bestrafungen für einzelne Aktionen hinzufügen. Aber die Frage nach der Entschlüsselung unserer Signale durch den Agenten bleibt offen. In diesem Artikel geht es um die Aufteilung der Belohnung im Sinne der Übertragung einzelner Signale an den trainierten Agenten.
Eigenvektoren und Eigenwerte: Explorative Datenanalyse in MetaTrader 5
In diesem Artikel werden verschiedene Möglichkeiten untersucht, wie Eigenvektoren und Eigenwerte in der explorativen Datenanalyse eingesetzt werden können, um einzigartige Beziehungen in den Daten aufzudecken.
Neuronale Netze leicht gemacht (Teil 67): Nutzung früherer Erfahrungen zur Lösung neuer Aufgaben
In diesem Artikel werden weitere Methoden zur Sammlung von Daten in einem Trainingssatz erörtert. Es liegt auf der Hand, dass der Lernprozess eine ständige Interaktion mit der Umgebung erfordert. Die Situationen können jedoch unterschiedlich sein.
Einführung in MQL5 (Teil 5): Eine Anleitung für Anfänger zu den Array-Funktionen in MQL5
Entdecken Sie die Welt der MQL5-Arrays in Teil 5, der sich an absolute Anfänger richtet. Dieser Artikel vereinfacht komplexe Kodierungskonzepte und legt dabei den Schwerpunkt auf Klarheit und Einbeziehung aller Beteiligten. Werden Sie Teil unserer Gemeinschaft von Lernenden, in der Fragen willkommen sind und Wissen geteilt wird!
Neuronale Netze leicht gemacht (Teil 15): Datenclustering mit MQL5
Wir fahren fort mit der Betrachtung der Clustermethode. In diesem Artikel werden wir eine neue CKmeans-Klasse erstellen, um eine der gängigsten k-means-Clustermethoden zu implementieren. Während der Tests gelang es dem Modell, etwa 500 Muster zu erkennen.
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie
Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte.
Algorithmen zur Optimierung mit Populationen Fish School Search (FSS)
Fish School Search (FSS, Suche mittels Fischschulen) ist ein neuer Optimierungsalgorithmus, der durch das Verhalten von Fischen in einem Schwarm inspiriert wurde, von denen die meisten (bis zu 80 %) in einer organisierten Gemeinschaft von Verwandten schwimmen. Es ist erwiesen, dass Fischansammlungen eine wichtige Rolle für die Effizienz der Nahrungssuche und den Schutz vor Räubern spielen.
Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester
Wir setzen die Serie von Artikeln über die Entwicklung eines Handelsroboters in Python und MQL5 fort. Heute werden wir das Problem der Auswahl und des Trainings eines Modells, das Testen desselben, die Implementierung der Kreuzvalidierung, die Rastersuche sowie das Problem des Modell-Ensembles lösen.
Einführung in MQL5 (Teil 6): Eine Anleitung für Anfänger zu den Array-Funktionen in MQL5 (II)
Begeben Sie sich auf die nächste Phase unserer MQL5-Reise. In diesem aufschlussreichen und einsteigerfreundlichen Artikel werden wir die übrigen Array-Funktionen näher beleuchten und komplexe Konzepte entmystifizieren, damit Sie effiziente Handelsstrategien entwickeln können. Wir werden ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse und ArraySort besprechen. Erweitern Sie Ihre Kenntnisse im algorithmischen Handel mit diesen wichtigen Array-Funktionen. Begleiten Sie uns auf dem Weg zur MQL5-Meisterschaft!
Experimente mit neuronalen Netzen (Teil 3): Praktische Anwendung
In dieser Artikelserie entwickle ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem und prüfe, ob neuronale Netze für Trader eine Hilfe sein können. MetaTrader 5 ist als autarkes Werkzeug für den Einsatz neuronaler Netze im Handel konzipiert.
Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus
Der Artikel befasst sich mit dem Boids Algorithmus, der auf einzigartigen Beispielen für das Verhalten von Tierschwärmen basiert. Der Boids-Algorithmus wiederum dient als Grundlage für die Schaffung einer ganzen Klasse von Algorithmen, die unter dem Namen „Schwarmintelligenz“ zusammengefasst werden.
Kategorientheorie in MQL5 (Teil 23): Ein anderer Blick auf den doppelten exponentiellen gleitenden Durchschnitt
In diesem Artikel setzen wir unser Thema vom letzten Mal fort, indem wir uns mit alltäglichen Handelsindikatoren befassen, die wir in einem „neuen“ Licht betrachten. Wir befassen uns in diesem Beitrag mit der horizontalen Zusammensetzung natürlicher Transformationen, und der beste Indikator dafür, der das soeben behandelte Thema noch erweitert, ist der doppelte exponentielle gleitende Durchschnitt (DEMA).
Einführung in MQL5 (Teil 4): Strukturen, Klassen und Zeitfunktionen beherrschen
Enthüllen wir die Geheimnisse der MQL5-Programmierung in unserem neuesten Artikel! Vertiefen wir uns in die Grundlagen von Strukturen, Klassen und Zeitfunktionen und machen uns mit der Programmierung vertraut. Egal, ob Sie Anfänger oder erfahrener Entwickler sind, unser Leitfaden vereinfacht komplexe Konzepte und bietet wertvolle Einblicke für die Beherrschung von MQL5. Verbessern Sie Ihre Programmierkenntnisse und bleiben Sie in der Welt des algorithmischen Handels an der Spitze!
Neuronale Netze leicht gemacht (Teil 22): Unüberwachtes Lernen von rekurrenten Modellen
Wir untersuchen weiterhin Modelle und Algorithmen für unüberwachtes Lernen. Diesmal schlage ich vor, dass wir die Eigenschaften von AutoAutoencodern bei der Anwendung auf das Training rekurrenter Modelle diskutieren.
Neuinterpretation klassischer Strategien in Python: Das Kreuzen von MAs
In diesem Artikel wird die klassische Kreuzungsstrategie von gleitenden Durchschnitten erneut untersucht, um ihre aktuelle Wirksamkeit zu bewerten. Angesichts der langen Zeit, die seit ihrer Einführung vergangen ist, untersuchen wir die potenziellen Verbesserungen, die KI für diese traditionelle Handelsstrategie bringen kann. Durch den Einsatz von KI-Techniken wollen wir fortschrittliche Vorhersagefähigkeiten nutzen, um Einstiegs- und Ausstiegspunkte für den Handel zu optimieren, sich an unterschiedliche Marktbedingungen anzupassen und die Gesamtperformance im Vergleich zu herkömmlichen Ansätzen zu verbessern.
Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze
In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz neuronaler Netze im Handel.
Neuronale Netze leicht gemacht (Teil 63): Unüberwachtes Pretraining für Decision Transformer (PDT)
Wir setzen die Diskussion über die Familie der Entscheidungstransformationsmethoden fort. In einem früheren Artikel haben wir bereits festgestellt, dass das Training des Transformators, der der Architektur dieser Methoden zugrunde liegt, eine ziemlich komplexe Aufgabe ist und einen großen gekennzeichneten Datensatz für das Training erfordert. In diesem Artikel wird ein Algorithmus zur Verwendung von ungekennzeichneten Trajektorien für das vorläufige Modelltraining vorgestellt.
Datenwissenschaft und ML (Teil 29): Wichtige Tipps für die Auswahl der besten Forex-Daten für AI-Trainingszwecke
In diesem Artikel befassen wir uns eingehend mit den entscheidenden Aspekten der Auswahl der relevantesten und hochwertigsten Forex-Daten, um die Leistung von KI-Modellen zu verbessern.
Frequenzbereichsdarstellungen von Zeitreihen: Das Leistungsspektrum
In diesem Artikel erörtern wir Methoden zur Analyse von Zeitreihen im Frequenzbereich. Hervorhebung des Nutzens der Untersuchung der Leistungsspektren von Zeitreihen bei der Erstellung von Vorhersagemodellen. In diesem Artikel werden wir einige der nützlichen Perspektiven erörtern, die sich aus der Analyse von Zeitreihen im Frequenzbereich unter Verwendung der diskreten Fourier-Transformation (dft) ergeben.
Integrieren Sie Ihr eigenes LLM in EA (Teil 4): Trainieren Sie Ihr eigenes LLM mit GPU
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
Neuronale Netze leicht gemacht (Teil 58): Decision Transformer (DT)
Wir setzen das Studium der Methoden des Reinforcement Learning bzw. des Verstärkungslernens fort. In diesem Artikel werde ich mich auf einen etwas anderen Algorithmus konzentrieren, der die Politik des Agenten im Paradigma der Konstruktion einer Sequenz von Aktionen betrachtet.
Neuronale Netze leicht gemacht (Teil 23): Aufbau eines Tools für Transfer Learning
In dieser Artikelserie haben wir bereits mehr als einmal über Transfer Learning berichtet. In diesem Artikel schlage ich vor, diese Lücke zu schließen und einen genaueren Blick auf Transfer Learning zu werfen.
Künstlicher Bienenstock-Algorithmus (ABHA): Theorie und Methoden
In diesem Artikel geht es um den 2009 entwickelten Artificial Bee Hive Algorithm (ABHA). Der Algorithmus ist auf die Lösung kontinuierlicher Optimierungsprobleme ausgerichtet. Wir werden uns ansehen, wie ABHA sich vom Verhalten eines Bienenvolkes inspirieren lässt, in dem jede Biene eine einzigartige Aufgabe hat, die ihr hilft, Ressourcen effizienter zu finden.
Datenwissenschaft und maschinelles Lernen (Teil 15): SVM, ein Muss im Werkzeugkasten jedes Händlers
Entdecken Sie die unverzichtbare Rolle von Support Vector Machines (SVM) bei der Gestaltung der Zukunft des Handels. Dieser umfassende Leitfaden zeigt auf, wie SVM Ihre Handelsstrategien verbessern, die Entscheidungsfindung optimieren und neue Chancen auf den Finanzmärkten erschließen kann. Tauchen Sie ein in die Welt der SVM mit realen Anwendungen, Schritt-für-Schritt-Tutorials und Expertenwissen. Rüsten Sie sich mit dem unverzichtbaren Werkzeug aus, das Ihnen helfen kann, die Komplexität des modernen Handels zu bewältigen. Verbessern Sie das Spiel Ihres Handels mit SVM - ein Muss für den Werkzeugkasten eines jeden Händlers.
Algorithmen zur Optimierung mit Populationen: der Gravitationssuchalgorithmus (GSA)
GSA ist ein von der unbelebten Natur inspirierter Populationsoptimierungsalgorithmus. Dank des in den Algorithmus implementierten Newton'schen Gravitationsgesetzes können wir dank der hohen Zuverlässigkeit der Modellierung der Interaktion physikalischer Körper den bezaubernden Tanz von Planetensystemen und Galaxienhaufen beobachten. In diesem Artikel möchte ich einen der interessantesten und originellsten Optimierungsalgorithmen vorstellen. Der Simulator für die Bewegung von Raumobjekten ist ebenfalls vorhanden.
Kategorientheorie in MQL5 (Teil 18): Natürliches Quadrat (Naturality Square)
In diesem Artikel setzen wir unsere Reihe zur Kategorientheorie fort, indem wir natürliche Transformationen, eine der wichtigsten Säulen des Fachs, vorstellen. Wir befassen uns mit der scheinbar komplexen Definition und gehen dann auf Beispiele und Anwendungen dieser Serie ein: Volatilitätsprognosen.
Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA)
Der Wal-Optimierungsalgorithmus (WOA) ist ein metaheuristischer Algorithmus, der durch das Verhalten und die Jagdstrategien von Buckelwalen inspiriert wurde. Die Hauptidee von WOA ist die Nachahmung der so genannten Fressmethode „Blasennetz“, bei der Wale Blasen um ihre Beute herum erzeugen und sie dann in einer spiralförmigen Bewegung angreifen.
Algorithmen zur Optimierung mit Populationen: Vogelschwarm-Algorithmus (BSA)
Der Artikel befasst sich mit dem vogelschwarmbasierten Algorithmus (BSA), der von den kollektiven Schwarminteraktionen der Vögel in der Natur inspiriert ist. Die unterschiedlichen Suchstrategien der BSA-Individuen, einschließlich des Wechsels zwischen Flucht-, Wachsamkeits- und Futtersuchverhalten, machen diesen Algorithmus vielschichtig. Es nutzt die Prinzipien der Vogelschwärme, der Kommunikation, der Anpassungsfähigkeit, des Führens und Folgens, um effizient optimale Lösungen zu finden.