Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)
Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.
Algoritmos de otimização populacionais: Busca harmônica (Harmony Search, HS)
Hoje, estudaremos e testaremos o algoritmo de otimização mais avançado, a busca harmônica (HS), que é inspirada no processo de procura da harmonia sonora perfeita. Então, qual algoritmo é agora o líder em nossa classificação?
Redes neurais de maneira fácil (Parte 30): Algoritmos genéticos
Hoje quero apresentar-lhes um método de aprendizado um pouco diferente. Pode-se dizer que é emprestado da teoria da evolução de Darwin. É provavelmente menos controlável do que os métodos discutidos anteriormente. Mas, mesmo assim, permite também treinar modelos indiferenciados.
Redes neurais em trading: Rede neural espaço-temporal (STNN)
Neste artigo, discutiremos o uso de transformações espaço-temporais para prever com eficácia o movimento futuro dos preços. Para melhorar a precisão das previsões numéricas na STNN, foi proposto um mecanismo de atenção contínua que permite ao modelo considerar melhor os aspectos relevantes dos dados.
Anotação de dados na análise de série temporal (Parte 1): Criação de um conjunto de dados com rótulos de tendência usando um gráfico EA
Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!
Usando o Algoritmo de Aprendizado de Máquina PatchTST para Prever a Ação do Preço nas Próximas 24 Horas
Neste artigo, aplicamos um algoritmo relativamente complexo de rede neural chamado PatchTST, lançado em 2023, para prever a ação do preço nas próximas 24 horas. Usaremos o repositório oficial, faremos algumas modificações, treinaremos um modelo para EURUSD e o aplicaremos para fazer previsões futuras, tanto em Python quanto em MQL5.
Teoria das Categorias em MQL5 (Parte 12): Ordem
Este artigo faz parte de uma série sobre a implementação de grafos usando a teoria das categorias no MQL5 e é dedicado à teoria da ordem (Order Theory). Consideraremos dois tipos básicos de ordenação e exploraremos como os conceitos de relação de ordem podem auxiliar os conjuntos monoidais na tomada de decisões de negociação.
Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5
Continuamos o tópico de busca de regras de associação. No artigo anterior, consideramos os aspectos teóricos desse tipo de problema. No artigo de hoje, ensinarei a implementação do método FP-Growth usando MQL5. Também vamos testá-la com dados reais.
Redes neurais de maneira fácil (Parte 62): uso do transformador de decisões em modelos hierárquicos
Nos últimos artigos, exploramos várias formas de usar o método Decision Transformer. Ele permite analisar não só o estado atual, mas também a trajetória de estados anteriores e as ações realizadas neles. Neste artigo, proponho que você conheça uma forma de usar este método em modelos hierárquicos.
Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)
A surpreendente capacidade das plantas daninhas de sobreviver em uma ampla variedade de condições foi a inspiração para o desenvolvimento de um poderoso algoritmo de otimização. O IWO (Invasive Weed Optimization) é considerado um dos melhores entre os analisados até o momento.
Python, ONNX e MetaTrader 5: Montando um modelo RandomForest com pré-processamento de dados via RobustScaler e PolynomialFeatures
Neste artigo, vamos desenvolver um modelo de floresta aleatória usando Python. Vamos treinar esse modelo e salvá-lo como um pipeline ONNX, já incluindo etapas de pré-processamento de dados. Depois, esse modelo será aplicado diretamente no terminal do MetaTrader 5.
Algoritmos de otimização populacionais: algoritmo de gotas de água inteligentes (Intelligent Water Drops, IWD)
Neste artigo é analisado um algoritmo interessante chamado de gotas de água inteligentes (IWD), inspirado na natureza inanimada, que simula o processo de formação do leito de um rio. As ideias desse algoritmo permitiram melhorar significativamente o líder anterior da classificação, o SDS, e o novo líder (SDSm modificado), como de costume, pode ser encontrado no arquivo do artigo.
Redes neurais em trading: Usando modelos de linguagem para previsão de séries temporais
Continuamos a analisar modelos de previsão de séries temporais. Neste artigo, proponho a apresentação de um algoritmo complexo baseado no uso de um modelo de linguagem previamente treinado.
Teoria das Categorias em MQL5 (Parte 23): uma nova perspectiva sobre a média móvel exponencial dupla
Neste artigo, continuamos a explorar indicadores de negociação populares sob uma nova ótica. Vamos processar a composição horizontal de transformações naturais. O melhor indicador para isso é a média móvel exponencial dupla (Double Exponential Moving Average, DEMA).
Reimaginando Estratégias Clássicas em Python: MA Crossovers
Neste artigo, revisitamos a clássica estratégia de cruzamento de médias móveis para avaliar sua eficácia atual. Dado o tempo desde sua criação, exploramos os possíveis aprimoramentos que a IA pode trazer a essa estratégia de negociação tradicional. Ao incorporar técnicas de IA, nosso objetivo é aproveitar as capacidades preditivas avançadas para otimizar pontos de entrada e saída de operações, adaptar-se a condições de mercado variáveis e melhorar o desempenho geral em comparação com abordagens convencionais.
Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído
Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.
Teoria das Categorias (Parte 9): Ações dos monoides
Esse artigo é a continuação da série sobre a implementação da teoria das categorias em MQL5. Nele são discutidas as ações de monoides como um meio de transformar os monoides descritos no artigo anterior para aumentar suas aplicações.
Data Science e Machine Learning (Parte 21): Desvendando Redes Neurais, Algoritmos de Otimização Desmistificados
Mergulhe no coração das redes neurais enquanto desmistificamos os algoritmos de otimização usados dentro das redes neurais. Neste artigo, descubra as principais técnicas que desbloqueiam todo o potencial das redes neurais, impulsionando seus modelos a novos patamares de precisão e eficiência.
Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo
Os autores do método FreDF confirmaram experimentalmente a vantagem da previsão combinada nas áreas de frequência e tempo. No entanto, o uso de um hiperparâmetro de ponderação não é ideal para séries temporais não estacionárias. Neste artigo, proponho que você conheça um método de combinação adaptativa de previsões nas áreas de frequência e tempo.
Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)
Continuamos a construção dos algoritmos que formam a base do DADA, um framework avançado para detecção de anomalias em séries temporais. Essa abordagem permite distinguir, de maneira eficiente, as flutuações aleatórias dos desvios realmente significativos. Ao contrário dos métodos clássicos, o DADA se adapta dinamicamente a diferentes tipos de dados, selecionando o nível ideal de compressão para cada caso específico.
Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo
Continuamos o ciclo de artigos sobre a criação de um robô de negociação em Python e MQL5. Hoje, vamos abordar a tarefa de desenvolver um algoritmo de negociação em Python.
Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento
No artigo anterior, construímos uma classe para agrupamento de dados. Hoje eu gostaria de compartilhar com vocês as formas mediante as quais os resultados podem ser usados para resolver problemas práticos de negociação.
Redes neurais de maneira fácil (Parte 42): Procrastinação do modelo, causas e métodos de resolução
A procrastinação de modelos no contexto do aprendizado por reforço pode ser causada por vários motivos, e a solução desse problema requer medidas apropriadas. Este artigo discute algumas das possíveis causas da procrastinação do modelo e métodos para superá-las.
Algoritmo de Busca Orbital Atômica — Atomic Orbital Search (AOS)
O artigo aborda o algoritmo AOS (Atomic Orbital Search), que utiliza conceitos do modelo orbital atômico para simular a busca por soluções. O algoritmo se baseia em distribuições probabilísticas e na dinâmica das interações dentro de um átomo. O artigo discute detalhadamente os aspectos matemáticos do AOS, incluindo a atualização das posições dos candidatos a soluções e os mecanismos de absorção e emissão de energia. O AOS abre novos caminhos para a aplicação de princípios quânticos em tarefas computacionais, oferecendo uma abordagem inovadora para a otimização.
Redes neurais de maneira fácil (Parte 45): Ensinando habilidades para investigar estados
Aprender habilidades úteis sem uma função de recompensa explícita é um dos principais desafios do aprendizado por reforço hierárquico. Anteriormente, já nos familiarizamos com dois algoritmos para resolver esse problema. Mas a questão da completa exploração do ambiente ainda está em aberto. Neste artigo, é apresentada uma abordagem diferente para o treinamento de habilidades, cujo uso depende diretamente do estado atual do sistema.
Teoria das Categorias em MQL5 (Parte 13): Eventos de calendário com esquemas de banco de dados
Neste artigo, discutimos como os esquemas de banco de dados podem ser incorporados para categorização em MQL5. Analisaremos brevemente como os conceitos de esquema de banco de dados podem ser combinados com a teoria da categoria na identificação de informações de texto (string) relevantes para a negociação. O foco será em eventos de calendário.
Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)
Nos trabalhos anteriores, conhecemos o método Decision Transformer e vários algoritmos derivados dele. Experimentamos com diferentes métodos de definição de objetivos. Durante os experimentos, trabalhamos com diferentes maneiras de definir objetivos, mas o estudo da trajetória já percorrida pelo modelo sempre ficou fora de nosso foco. Neste artigo, quero apresentar um método que preenche essa lacuna.
Teoria das Categorias em MQL5 (Parte 5): Equalizadores
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
Expert Advisor Auto-otimizável com MQL5 e Python (Parte IV): Empilhamento de Modelos
Hoje, vamos demonstrar como você pode construir aplicações de trading com IA capazes de aprender com os próprios erros. Vamos demonstrar uma técnica conhecida como stacking (empilhamento), na qual usamos 2 modelos para fazer 1 previsão. O primeiro modelo é tipicamente um aprendiz mais fraco, e o segundo modelo normalmente é um modelo mais poderoso que aprende com os resíduos do nosso aprendiz mais fraco. Nosso objetivo é criar um conjunto de modelos (ensemble), na esperança de alcançar maior acurácia.
Redes neurais de maneira fácil (Parte 57): Stochastic Marginal Actor-Critic (SMAC)
Apresentamos um algoritmo relativamente novo, o Stochastic Marginal Actor-Critic (SMAC), que permite a construção de políticas de variáveis latentes no contexto da maximização da entropia.
Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?
As Redes Neurais Convolucionais (CNNs) são renomadas por sua capacidade de detectar padrões em imagens e vídeos, com aplicações em diversos campos. Neste artigo, exploramos o potencial das CNNs para identificar padrões valiosos nos mercados financeiros e gerar sinais de trading eficazes para bots de negociação no MetaTrader 5. Vamos descobrir como essa técnica de aprendizado profundo pode ser aproveitada para decisões de trading mais inteligentes.
Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado
Nos dois últimos artigos, criamos uma ferramenta que permite criar e editar modelos de redes neurais. E agora é hora de avaliar o uso potencial da transferência de aprendizado (transfer learning, em inglês) usando exemplos práticos.
Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM)
O artigo descreve os princípios, os métodos e as possibilidades de aplicação do EM a diferentes problemas de otimização. Ele uma ferramenta de otimização eficiente, capaz de lidar com grandes quantidades de dados e funções multidimensionais.
Negociação algorítmica baseada em padrões de reversão 3D
Estamos abrindo um novo mundo de trading automatizado em barras 3D. Como seria um robô de trading operando em barras multidimensionais de preço, e será que os clusters “amarelos” das barras 3D conseguem prever reversões de tendência? Como é o trading em múltiplas dimensões?
Redes neurais em trading: Método abrangente de previsão de trajetórias (Traj-LLM)
Neste artigo, quero apresentar a você um método interessante de previsão de trajetórias, desenvolvido para resolver problemas relacionados ao movimento autônomo de veículos. Os autores do método combinaram os melhores elementos de diferentes soluções arquitetônicas.
Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)
A extração e integração eficazes de dependências de longo prazo e características de curto prazo continuam sendo uma tarefa importante na análise de séries temporais. Compreendê-las e integrá-las corretamente é necessário para criar modelos preditivos precisos e confiáveis.
Redes neurais de maneira fácil (Parte 44): Explorando habilidades de forma dinâmica
No artigo anterior, apresentamos o método DIAYN, que oferece um algoritmo para aprender uma variedade de habilidades. O uso das habilidades adquiridas pode ser usado para diversas tarefas. Mas essas habilidades podem ser bastante imprevisíveis, o que pode dificultar seu uso. Neste artigo, veremos um algoritmo para ensinar habilidades previsíveis.
Algoritmos de otimização populacionais: algoritmo de otimização de forrageamento bacteriano (BFO)
A base da estratégia de forrageamento de E. coli (E. coli) inspirou cientistas a desenvolverem o algoritmo de otimização BFO. Esse algoritmo apresenta ideias originais e abordagens promissoras para otimização e merece um estudo mais aprofundado.
Redes neurais em trading: Aumentando a eficiência do Transformer por meio da redução da nitidez (SAMformer)
O treinamento de modelos Transformer exige grandes volumes de dados e muitas vezes é dificultado pela fraca capacidade dos modelos de generalizar em amostras pequenas. O framework SAMformer ajuda a resolver esse problema ao evitar mínimos locais ruins. E aumenta a eficiência dos modelos mesmo em conjuntos de treinamento limitados.
Ciência de dados e aprendizado de máquina (Parte 17): O dinheiro cresce em árvores? Florestas aleatórias no trading de forex
Neste artigo, vamos desvendar os segredos da alquimia algorítmica, explorando a arte e precisão dos mercados financeiros. Você vai ver como as florestas aleatórias transformam dados em previsões e ajudam a navegar nas complexidades do mercado financeiro. Vamos entender o papel das florestas aleatórias com dados financeiros e ver se elas podem ajudar a aumentar os lucros.