MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発

MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発

この記事では、「トレンドフラットモメンタム(Trend Flat Momentum)戦略」のためのエキスパートアドバイザー(EA)をMQL5で開発します。移動平均線のクロスオーバーに、RSI(相対力指数)とCCI(商品チャネル指数)といったモメンタム系のフィルターを組み合わせて、トレードシグナルを生成します。また、バックテストの方法や、実運用でのパフォーマンス向上のための改善案についても取り上げます。
preview
プライスアクション分析ツールキットの開発(第15回):クォーターズ理論の紹介(I) - Quarters Drawerスクリプト

プライスアクション分析ツールキットの開発(第15回):クォーターズ理論の紹介(I) - Quarters Drawerスクリプト

サポートとレジスタンスのポイントは、トレンドの反転や継続の可能性を示す重要なレベルです。これらのレベルを見つけるのは難しいこともありますが、一度特定できれば、市場をより的確に捉える準備が整います。さらなるサポートとして、本記事で紹介されているQuarters Drawerツールをぜひご活用ください。このツールは、主要およびマイナーなサポート・レジスタンスレベルの特定に役立ちます。
preview
MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

本記事では、MQL5経済指標カレンダーを活用して、ユーザー定義のフィルターと時間オフセットに基づいた自動取引エントリーを実装します。対象となる経済指標イベントを検出し、予想値と前回値の比較により、買うか売るかの判断を下します。動的なカウントダウンタイマーは、ニュース公開までの残り時間を表示し、取引後には自動的にリセットされます。
preview
知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

強化学習において、リプレイバッファは特にDQNやSACのようなオフポリシーアルゴリズムにおいて重要な役割を果たします。これにより、メモリバッファのサンプリング処理が注目されます。たとえばSACのデフォルト設定では、このバッファからランダムにサンプルを取得しますが、Prioritized Experience Replay (PER)を用いることで、TDスコア(時間差分誤差)に基づいてサンプリングを調整することができます。本稿では、強化学習の意義を改めて確認し、いつものように交差検証ではなく、この仮説だけを検証する、ウィザードで組み立てたエキスパートアドバイザー(EA)を用いて考察します。
preview
MQL5での取引戦略の自動化(第9回):アジアブレイクアウト戦略のためのエキスパートアドバイザーの構築

MQL5での取引戦略の自動化(第9回):アジアブレイクアウト戦略のためのエキスパートアドバイザーの構築

この記事では、アジアブレイクアウト戦略のためのエキスパートアドバイザー(EA)をMQL5で構築します。セッション中の高値と安値を計算し、移動平均によるトレンドフィルタリングをおこないます。また、動的なオブジェクトスタイリング、ユーザー定義の時間入力、堅牢なリスク管理も実装します。最後に、プログラムの精度を高めるためのバックテストおよび最適化手法を紹介します。
preview
MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築

MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築

この記事では、バタフライハーモニックパターンを検出するためのMQL5エキスパートアドバイザー(EA)を構築します。ピボットポイントを特定し、フィボナッチレベルを検証してパターンを確認します。次に、チャート上にパターンを可視化し、確認された際には自動的に取引を実行します。
preview
MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

この記事では、動的なロットスケーリングを採用したMQL5のグリッドトレーディングエキスパートアドバイザー(EA)を構築します。戦略の設計、コードの実装、バックテストのプロセスについて詳しく解説します。最後に、自動売買システムを最適化するための重要な知見とベストプラクティスを共有します。
preview
知っておくべきMQL5ウィザードのテクニック(第54回):SACとテンソルのハイブリッドによる強化学習

知っておくべきMQL5ウィザードのテクニック(第54回):SACとテンソルのハイブリッドによる強化学習

Soft Actor Critic (SAC)は、以前の記事で紹介した強化学習アルゴリズムです。その際には、効率的にネットワークを学習させる手法としてPythonやONNXの活用についても触れました。今回は、このアルゴリズムを改めて取り上げ、Pythonでよく使われるテンソルや計算グラフを活用することを目的としています。
preview
MQL5での取引戦略の自動化(第6回):スマートマネートレーディングのためのオーダーブロック検出の習得

MQL5での取引戦略の自動化(第6回):スマートマネートレーディングのためのオーダーブロック検出の習得

この記事では、純粋なプライスアクション分析を用いてMQL5でオーダーブロック検出を自動化します。オーダーブロックの定義、検出の実装、自動売買への統合をおこない、最後に戦略のバックテストを通じてパフォーマンスを評価します。
preview
エキスパートアドバイザーの堅牢性テスト

エキスパートアドバイザーの堅牢性テスト

戦略開発には、多くの複雑な要素が含まれていますが、これらの多くは初心者トレーダーには十分に伝えられていません。その結果、私自身を含め多くのトレーダーが、こうした教訓を痛みを伴う経験を通じて学ぶことになりました。この記事では、MQL5で戦略を開発する際に初心者トレーダーが直面しがちな一般的な落とし穴について、私の観察に基づいて解説します。EAの信頼性を見極め、簡単に実践できる方法で自作EAの堅牢性を検証するための、さまざまなヒントやコツ、具体例を紹介します。本記事の目的は、読者がEA購入時の詐欺を回避し、自身の戦略開発での失敗を未然に防げるよう支援することです。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標

PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標

この記事では、あらゆる市場における価格レベルの変化を、それに対応する角度の変化へと変換する2回目の試みをおこないます。今回は、前回よりも数学的に洗練されたアプローチを採用しました。得られた結果は、アプローチを変更した判断が正しかった可能性を示唆しています。本日は、どの市場を分析する場合でも、極座標を用いて価格レベルの変化によって形成される角度を意味のある方法で計算する方法についてご説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)

知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)

MFI(Market Facilitation Index、マーケットファシリテーションインデックス)は、ビル・ウィリアムズによる指標の一つで、出来高と連動した価格変動の効率性を測定することを目的としています。いつものように、本記事では、ウィザードアセンブリシグナルクラスの枠組みにおいて、このインジケーターのさまざまなパターンを検証し、それに基づいたテストレポートおよび分析結果を紹介します。
preview
MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発

MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発

この記事では、14期間および50期間の移動平均クロスオーバーをシグナルとして使用し、14期間RSIフィルターで確認するAdaptive Crossover RSI Trading Suiteシステムを開発します。本システムには取引日フィルター、注釈付きのシグナル矢印、監視用のリアルタイムダッシュボードが含まれており、このアプローチにより自動取引の精度と適応性が向上します。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール

MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール

インジケーターを安全に使用する方法を定義したベストプラクティスに従うのは、必ずしも容易ではありません。市場の動きが穏やかな状況では、インジケーターが意図した通りのシグナルを発しないことがあり、その結果、アルゴリズム取引における貴重なチャンスを逃してしまう可能性があります。本稿では、この問題に対する潜在的な解決策として、利用可能な市場データに応じて取引ルールを適応させることが可能な取引アプリケーションの構築方法を提案します。
preview
MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築

MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築

この記事では、RSI(相対力指数)を活用して取引シグナルを生成する、MQL5によるMulti-Level Zone Recoveryシステムの開発について解説します。本システムでは、各シグナルインスタンスを動的に配列構造に追加し、Zone Recoveryロジックの中で複数のシグナルを同時に管理することが可能になります。このアプローチにより、スケーラブルかつ堅牢なコード設計を維持しながら、複雑な取引管理シナリオに柔軟かつ効果的に対応できる方法を紹介します。
preview
独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト

独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
逆フェアバリューギャップ取引戦略

逆フェアバリューギャップ取引戦略

逆フェアバリューギャップ(IFVG)とは、価格が過去に特定されたフェアバリューギャップ(FVG)へ回帰した際に、通常想定されるサポートまたはレジスタンスとしての反応を示さず、その水準を無視して通過してしまう現象を指します。このような失敗は、市場の方向性の変調を示すサインである可能性があり、逆張り志向の取引アプローチにおいて優位性をもたらすシグナルとなることがあります。本記事では、MetaTrader 5エキスパートアドバイザー(EA)の戦略として、この逆フェアバリューギャップを定量的に捉え、取引ロジックに組み込むために私が独自に開発したアプローチを紹介します。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整

MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整

アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。
preview
MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)

MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)

RSI、MA、ストキャスティクスなどの複数のインジケーターを使用してMQL5でエキスパートアドバイザー(EA)を開発し、隠れた強気および弱気のダイバージェンスを検出する方法を学びます。教育目的で、詳細な例および完全にコメントされたソースコードを用いて、効果的なリスク管理を実装し、取引を自動化する方法をご紹介します。
preview
MQL5でカレンダーベースのニュースイベントブレイクアウトエキスパートアドバイザーを開発する

MQL5でカレンダーベースのニュースイベントブレイクアウトエキスパートアドバイザーを開発する

ボラティリティは、影響力の大きいニュースイベントの周辺でピークに達する傾向があり、大きなブレイクアウトの機会を生み出します。本記事では、カレンダーを基にしたブレイクアウト戦略の実装プロセスについて説明します。カレンダーデータを解釈・保存するためのクラスの作成、これを活用した現実的なバックテストの開発、そして最終的にライブ取引用の実行コードの実装までを一貫して解説します。
preview
MQL5でSHA-256暗号化アルゴリズムをゼロから実装する

MQL5でSHA-256暗号化アルゴリズムをゼロから実装する

これまで、DLLを使用せずに暗号通貨取引所との統合を構築することは長らく課題とされてきました。しかし、本ソリューションは、市場へ直接接続するための包括的なフレームワークを提供します。
preview
流動性狩り取引戦略

流動性狩り取引戦略

流動性狩り(Liquidity Grab)取引戦略は、市場における機関投資家の行動を特定し、それを活用することを目指すSmart Money Concepts(SMC)の重要な要素です。これには、サポートゾーンやレジスタンスゾーンなどの流動性の高い領域をターゲットにすることが含まれます。市場がトレンドを再開する前に、大量の注文によって一時的な価格変動が引き起こされます。この記事では、流動性狩りの概念を詳しく説明し、MQL5による流動性狩り取引戦略エキスパートアドバイザー(EA)の開発プロセスの概要を紹介します。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

前回の記事で開始した、MQL5を使用したRefMask3Dフレームワークの構築作業を引き続き進めていきます。このフレームワークは、点群におけるマルチモーダルインタラクションと特徴量解析を包括的に研究し、自然言語で提供される説明に基づいてターゲットオブジェクトを特定・識別することを目的としています。
preview
従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル

従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル

この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。
preview
取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション

取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション

市場の状況を分析する際には、それを個別のセグメントに分割し、主要なトレンドを特定します。しかし、従来の分析手法は一つの側面に偏りがちで、全体像の適切な把握を妨げます。この記事では、複数のオブジェクトを選択できる手法を通じて、状況をより包括的かつ多層的に理解する方法を紹介します。
preview
取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ

取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ

この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。
preview
取引におけるニューラルネットワーク:Superpoint Transformer (SPFormer)

取引におけるニューラルネットワーク:Superpoint Transformer (SPFormer)

本記事では、中間データの集約を不要とするSuperpoint Transformer (SPFormer)に基づく3Dオブジェクトのセグメンテーション手法を紹介します。これによりセグメンテーション処理の高速化とモデル性能の向上が実現されます。
preview
取引におけるニューラルネットワーク:データの局所構造の探索

取引におけるニューラルネットワーク:データの局所構造の探索

ノイズの多い状況下で市場データの局所構造を効果的に識別・保持することは、取引において極めて重要な課題です。自己アテンション(Self-Attention)メカニズムの活用は、このようなデータの処理において有望な結果を示していますが、従来のアプローチでは基盤となる構造の局所的な特性が考慮されていません。この記事では、こうした構造的依存関係を組み込むことが可能なアルゴリズムを紹介します。
preview
多通貨エキスパートアドバイザーの開発(第18回):将来期間を考慮したグループ選択の自動化

多通貨エキスパートアドバイザーの開発(第18回):将来期間を考慮したグループ選択の自動化

これまで手動でおこなっていた手順の自動化を引き続き進めていきましょう。今回は、第2段階の自動化、すなわち取引戦略の単一インスタンスの最適なグループ選定に立ち返り、フォワード期間におけるインスタンスの結果を考慮する機能を追加します。
preview
取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

ハイパーネットワークを活用した新しいオブジェクト検出アプローチをご紹介します。ハイパーネットワークはメインモデルの重みを生成し、現在の市場状況の特性を考慮に入れることができます。この手法により、モデルはさまざまな取引条件に適応し、予測精度の向上が可能になります。
preview
取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

この記事では、点群におけるオブジェクト検出問題を解決するためのアテンションを用いたアルゴリズムについて解説します。点群におけるオブジェクト検出は、多くの現実世界の応用において極めて重要です。
preview
取引におけるニューラルネットワーク:点群の階層的特徴量学習

取引におけるニューラルネットワーク:点群の階層的特徴量学習

点群から特徴量を抽出するアルゴリズムの研究を続けます。この記事では、PointNet手法の効率を高めるメカニズムについて解説します。
preview
取引におけるニューラルネットワーク:点群解析(PointNet)

取引におけるニューラルネットワーク:点群解析(PointNet)

直接的な点群解析は、不要なデータの増加を避け、分類やセグメンテーションタスクにおけるモデルの性能を向上させます。このような手法は、元データの摂動に対して高い性能と堅牢性を示します。
preview
取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)

取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)

階層的ベクトルTransformer法の研究を引き続き進めていきます。本記事では、モデルの構築を完了し、実際の履歴データを用いて訓練およびテストをおこないます。
preview
MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する

MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する

この記事では、パラボリックSARと単純移動平均(SMA)インジケーターを活用し、応答性の高い取引戦略を構築する高速取引型エキスパートアドバイザー(EA)をMQL5で開発します。インジケーターの使用方法、シグナルの生成、テストおよび最適化プロセスなど、戦略の実装について詳しく解説します。
preview
多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備

多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備

現在、EAはデータベースを利用して、取引戦略の各インスタンスの初期化文字列を取得しています。しかし、データベースは非常に大容量であり、実際のEAの動作には不要な情報も多数含まれています。そこで、データベースへの接続を必須とせずにEAを機能させる方法を考えてみましょう。
preview
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
preview
取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)

取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)

エージェントの行動を理解することはさまざまな分野で重要ですが、ほとんどの手法は特定のタスク(理解、ノイズ除去、予測)に焦点を当てており、そのため実際のシナリオでは効果的に活用できないことが多いです。この記事では、さまざまな問題を解決するために適応可能なモデルについて説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター

知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター

ACオシレーター(アクセラレーターオシレーター、Accelerator Oscillator)は、価格のモメンタムの「速度」だけでなく、その「加速」を追跡する、ビル・ウィリアムズによって開発されたインジケーターの一つです。最近の記事で取り上げたオーサムオシレーター(AO)と非常によく似ていますが、単なるスピードではなく加速に重点を置くことで、遅延の影響を回避しようとしています。本記事では、毎回のようにこのオシレーターからどのようなパターンが得られるかを分析し、ウィザード形式で構築されたエキスパートアドバイザー(EA)を通じて、それらが実際の取引においてどのような意味を持ち得るかを検証します。
preview
MQL5での取引戦略の自動化(第3回):ダイナミック取引管理のためのZone Recovery RSIシステム

MQL5での取引戦略の自動化(第3回):ダイナミック取引管理のためのZone Recovery RSIシステム

この記事では、MQL5を使ってZone Recovery RSI EAシステムを構築し、RSIシグナルによって取引を開始し、損失を管理するためのリカバリーストラテジーを実装します。取引エントリー、リカバリーロジック、ポジション管理を自動化するために、ZoneRecoveryクラスを作成します。この記事の最後では、EAのパフォーマンスを最適化し、その有効性を高めるためのバックテストの洞察を紹介します。