
さまざまな移動平均タイプをテストして、それらがどの程度洞察力に富むかを確認する
多くのトレーダーにとって移動平均指標が重要であることは周知の事実です。取引に役立つ移動平均タイプは他にもあります。この記事ではこれらのタイプを特定し、それぞれのタイプと最も人気のある単純移動平均タイプを簡単に比較して、どれが最良の結果を示すことができるかを確認します。

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第1回):ADXとパラボリックSARの組み合わせによる指標シグナル
この記事で紹介する多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートから複数の銘柄ペアの取引(新規注文、決済注文、注文の管理など)を行うことができるEA(自動売買ロボット)です。

MQL5のインタラクティブGUIで取引チャートを改善する(第3回):シンプルで移動可能な取引GUI
本連載第3回では、MQL5の移動可能な取引ダッシュボードへのインタラクティブGUIの統合について紹介します。この記事は、第1回と第2回で設定された基礎の上に構築され、静的な取引ダッシュボードを動的で移動可能なものに変えるよう読者を導きます。

RSIディープスリームーブ取引手法
MetaTrader 5でRSIディープスリームーブ取引テクニックを紹介します。この記事は、株式、通貨、商品などの証券の強さと勢いを測定するために使用されるテクニカル分析指標であるRSIに基づくいくつかの取引テクニックを紹介する新しい一連の研究に基づいています。

ニューラルネットワークが簡単に(第37回):スパースアテンション(Sparse Attention)
前回は、アテンションメカニズムをアーキテクチャーに用いたリレーショナルモデルについて説明しました。これらのモデルの特徴の1つは、コンピューティングリソースを集中的に利用することです。今回は、セルフアテンションブロック内部の演算回数を減らす仕組みの1つについて考えてみたいと思います。これにより、モデルの一般的なパフォーマンスが向上します。

MQL5のプログラム構造について学ぶ必要があるすべて
どのようなプログラミング言語でも、プログラムには特定の構造があります。この記事では、MetaTrader 5で実行可能なMQL5取引システムや取引ツールを作成する際に非常に役立つMQL5プログラム構造のすべての部分のプログラミングの基礎を理解することにより、MQL5プログラム構造の重要な部分を学びます。

MQL4およびMQL5開発のフレームワーク内のOpenAI ChatGPT機能
この記事では、エキスパートアドバイザー(EA)、指標、スクリプトの開発にかかる時間と労力を削減するという観点から、OpenAI ChatGPTの機能を理解するために、ChatGPTをいじっていきます。このテクノロジーについて簡単に説明し、MQL4およびMQL5でのプログラミングにこのテクノロジーを正しく使用する方法を説明します。

古いトレンドトレーディング戦略の再検討:2つのストキャスティクス、MAとフィボナッチ
古い取引戦略。この記事では、純粋にテクニカルな方法でトレンドをフォローするための戦略の1つを紹介します。これは純粋なテクニカル戦略で、シグナルとターゲットを出すためにいくつかのテクニカル指標とツールを使用します。戦略の構成要素は次の通りです。14期間のストキャスティクス、5期間のストキャスティクス、200期間の移動平均線、フィボナッチ予測ツール(目標設定用)。

MQL5でのグラフィカルパネルの作成を簡単に
この記事では、取引において最も価値があり役立つツールの1つであるグラフィカルパネルを作成する必要がある人に、シンプルで簡単なガイドを提供します。グラフィカルパネルは、取引に関するタスクを簡素化および容易にして、時間を節約し、気を散らすことなく取引プロセスそのものに集中するのに役立ちます。

平均足と移動平均を組み合わせると良好なシグナルを提供できるのか
戦略を組み合わせることで、より良い機会が得られる可能性があります。指標やパターンを組み合わせたり、さらに良いことに指標とパターンを組み合わせたりして、追加の確認要素を得ることができます。移動平均はトレンドを確認し、それに乗るのに役立ちます。これらは、そのシンプルさと、分析に付加価値をもたらす実証済みの実績により、最もよく知られているテクニカル指標です。

アプリケーションを使用してMQL5の関数を理解する
関数はどのプログラミング言語においても重要なものです。関数は、開発者が同じことを繰り返さないことを意味するDRY (Do not Repeat Yourself)の概念を適用するのに役立つなどの多くのメリットを提供します。この記事では、関数に関する詳細情報と、物事を複雑にすることなく取引システムを強化するために、あらゆるシステムで使用または呼び出しできる簡単なアプリケーションを作成して、MQL5で独自の関数を作成する方法について説明します。

MQL5のインタラクティブGUIで取引チャートを改善する(第2回):移動可能なGUI (II)
MQL5で移動可能なGUIを作成するための詳細なガイドで、取引戦略やユーティリティでの動的なデータ表現の可能性を引き出しましょう。オブジェクト指向プログラミングの基本原理を理解し、同じチャート上に単一または複数の移動可能なGUIを簡単かつ効率的に設計実装する方法を発見してください。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ
この記事では、MQL5のネイティブMQTTクライアント開発における最初の試みについて報告します。MQTTは、クライアントサーバーのパブリッシュ/サブスクライブメッセージングトランスポートプロトコルです。MQTTは軽量、オープン、シンプルで、簡単に実装できるように設計されています。これらの特性により、さまざまな状況での使用に最適です。

MQL5オブジェクト指向プログラミング(OOP)について
開発者として、私たちは、特に異なる動作をするオブジェクトがある場合に、コードを重複せずに再利用可能で柔軟なソフトウェアを作成し開発する方法を学ぶ必要があります。これは、オブジェクト指向プログラミングのテクニックと原則を使うことでスムーズにおこなうことができます。この記事では、MQL5オブジェクト指向プログラミングの基本を紹介し、この重要なトピックの原則とプラクティスをソフトウェアでどのように使用できるかを説明します。

MQL5のインタラクティブGUIで取引チャートを改善する(前編):移動可能なGUI (I)
MQL5で動かせるGUIを作成するための包括的なガイドで、取引戦略やユーティリティでのダイナミックなデータ表現の力を解き放ちましょう。チャートイベントのコアコンセプトに触れ、同じチャート上にシンプルで複数の移動可能なGUIをデザインし、実装する方法を学びます。この記事では、GUIに要素を追加し、機能性と美しさを向上させるプロセスについても説明します。

MQL5を使用してカスタムドンチャンチャネル指標を作成する方法
価格周辺のチャネルを視覚化するために使用できるテクニカルツールは数多くあります。これらのツールの1つが、ドンチャンチャネル指標です。この記事では、ドンチャンチャネル指標を作成する方法と、EAを使用してカスタム指標としてそれを取引する方法を学びます。

Rebuyのアルゴリズム:多通貨取引シミュレーション
本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。

データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける
複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。

モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化
本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。

知っておくべきMQL5ウィザードのテクニック(第06回):フーリエ変換
ジョセフ・フーリエによって導入されたフーリエ変換は、複雑なデータの波動点を単純な構成波に分解する手段です。この記事では、トレーダーにとって有益なこの機能を見ていきます。

Rebuyのアルゴリズム:効率を上げるための数学モデル
この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。

自動で動くEAを作る(第15回):自動化(VII)
自動化に関するこの連載を完結させるために、前回に引き続きトピックについて説明しましょう。EAを時計仕掛けのように動かすために、すべてがどのように組み合わされるかを見ていきます。

自動で動くEAを作る(第14回):自動化(VI)
今回は、この連載で得た知識をすべて実践してみましょう。最終的には、100%自動化された機能的なシステムを構築します。しかしその前に、まだ最後の詳細を学ばなければなりません。

自動で動くEAを作る(第13回):自動化(V)
フローチャートとは何かご存じでしょうか。使い方はご存じですか。フローチャートは初心者向けだとお考えでしょうか。この新しい記事では、フローチャートの操作方法を説明します。

MQL5を使用したカスタムTrue Strength Index指標の作成方法
カスタム指標の作成方法についてご紹介します。今回はTSI (True Strength Index)を扱い、それに基づいてエキスパートアドバイザー(EA)を作成することにします。

MQL5を使用してトレンドとチャートパターンを検出する方法
この記事では、トレンド(上昇トレンド、下降トレンド、横ばい)やチャートパターン(ダブルトップ、ダブルボトム)などの値動きのパターンをMQL5によって自動的に検出する方法を提供します。

ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン
この記事では、パーセプトロンを自給自足の価格予測ツールとして使用する例として、一般的な概念と最もシンプルな既製のエキスパートアドバイザー(EA)を紹介し、その最適化の結果について説明します。

MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる
今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。

ニューラルネットワークの実験(第5回):ニューラルネットワークに渡すための入力の正規化
ニューラルネットワークはトレーダーのツールキットの究極のツールです。この仮定が正しいかどうかを確認してみましょう。MetaTrader 5は、取引でニューラルネットワークを使用するための自立した媒体としてアプローチされています。簡単な説明が記載されています。

MQL5の圏論(第4回):スパン、実験、合成
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

自動で動くEAを作る(第12回):自動化(IV)
自動化されたシステムをシンプルだと思う方はおそらく、それを作るために必要なことを十分に理解していないのでしょう。今回は、多くのエキスパートアドバイザー(EA)を死に至らしめる問題点についてお話します。この問題を解決するために、無差別に注文をトリガーすることが考えられます。

自動で動くEAを作る(第11回):自動化(III)
自動化されたシステムは、適切なセキュリティなしでは成功しません。ただし、いくつかのことをよく理解していなければ、セキュリティは保証されません。この記事では、自動化されたシステムで最大のセキュリティを達成することがなぜそれほど難しいのかを探ります。

データサイエンスと機械学習(第12回):自己学習型ニューラルネットワークは株式市場を凌駕することができるのか?
常に株式市場を予測しようとするのにお疲れでないでしょうか。より多くの情報に基づいた投資判断をするための水晶玉があったらとお思いでしょうか。自己学習型ニューラルネットワークは、あなたが探していたソリューションかもしれません。この記事では、これらの強力なアルゴリズムが、株式市場を凌駕する「波に乗る」のに役立つのかどうかを探ります。膨大な量のデータを分析し、パターンを特定することで、自己訓練されたニューラルネットワークは、しばしば人間のトレーダーよりも精度の高い予測をおこなうことができます。この最先端のテクノロジーを使って、利益を最大化し、よりスマートな投資判断をおこなう方法をご紹介します。

フィボナッチによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標を使用して取引システムを設計する方法についての連載を続けます。今回の新しいテクニカルツールはフィボナッチです。このテクニカル指標に基づいて取引システムを設計する方法を学びます。

ニューラルネットワークが簡単に(第36回):関係強化学習
前回の記事で説明した強化学習モデルでは、元のデータ内のさまざまなオブジェクトを識別できる畳み込みネットワークのさまざまなバリアントを使用しました。畳み込みネットワークの主な利点は、場所に関係なくオブジェクトを識別できることです。同時に、畳み込みネットワークは、オブジェクトやノイズのさまざまな変形がある場合、常にうまく機能するとは限りません。これらは、関係モデルが解決できる問題です。