
多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備
既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。

取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)
この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。

取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル
前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。

取引におけるニューラルネットワーク:時系列の区分線形表現
本記事は、これまでの公開記事とはやや異なる内容となっています。本記事では、時系列データの代替的な表現について解説します。時系列の区分的線形表現とは、小さな区間ごとに線形関数を用いて時系列データを近似する手法です。

ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練
さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。

多通貨エキスパートアドバイザーの開発(第14回):リスクマネージャーにおける適応型ボリューム変更
以前開発されたリスクマネージャーには基本的な機能のみが含まれていました。取引戦略のロジックに干渉することなく取引結果を向上させるために、どのような開発の可能性があるかを検討してみましょう。

MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする
この記事では、まず、MQL5経済指標カレンダーの基本機能を理解し、それを取引に活用する方法を探ります。次に、MQL5で経済指標カレンダーの主要機能を実装し、取引の判断に役立つニュースを取得する方法を説明します。最後に、この情報を活用して取引戦略を効果的に強化する方法を紹介します。

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標
ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。

Connexusのリクエスト(第6回):HTTPリクエストとレスポンスの作成
Connexusライブラリ連載第6回目では、HTTPリクエストの構成要素全体に焦点を当て、リクエストを構成する各コンポーネントを取り上げます。そして、リクエスト全体を表現するクラスを作成し、これまでに作成したクラスを統合します。

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加
この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。

MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)
本日は、現在開発中の取引管理パネルのセキュリティ強化について説明します。Telegram APIを統合し、2要素認証(2FA)を実現する新しいセキュリティ戦略にMQL5を実装する方法を探ります。このディスカッションでは、MQL5を活用してセキュリティ対策を強化する方法について貴重な洞察を得ることができます。さらに、MathRand関数の機能に焦点を当て、セキュリティフレームワーク内でどのように効果的に活用できるかを検討します。さらに詳しく知りたい方は、読み続けてください。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(II)
エキスパートアドバイザー(EA)に統合できる戦略の数は、事実上無限と言えます。しかし、戦略を追加するたびにアルゴリズムの複雑さが増していきます。複数の戦略を組み込むことで、EAは多様な市場環境により柔軟に適応し、収益性を向上させる可能性が高まります。本日は、Trend Constraint EAの機能をさらに強化するための取り組みとして、リチャード・ドンチャンが開発した著名な戦略のひとつを対象に、MQL5を活用する方法をご紹介します。

Connexusヘルパー(第5回):HTTPメソッドとステータスコード
この記事では、Web上でクライアントとサーバー間の重要な通信手段であるHTTPメソッドとステータスコードについて理解します。各メソッドの役割を理解することで、リクエストをより正確に制御できるようになり、サーバーに対して実行したいアクションを明確に伝えることができます。これにより、通信の効率が向上します。

日足レンジブレイクアウト戦略に基づくMQL5 EAの作成
この記事では、日足レンジブレイクアウト(Daily Range Breakout)戦略に基づいてMQL5エキスパートアドバイザー(EA)を作成します。戦略の重要な概念を説明し、EAの設計図を設計し、MQL5でブレイクアウトロジックを実装します。最後に、EAの効果を最大限に引き出すためのバックテストと最適化の手法について探ります。

知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習
SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。

ニュース取引が簡単に(第4回):パフォーマンス向上
この記事では、ストラテジーテスターでエキスパートアドバイザー(EA)のランタイムを改善する方法について掘り下げていきます。これらのニュースイベントの時間は、指定された時間内にアクセスされます。これにより、EAはボラティリティの高い環境でも低い環境でも、イベントドリブン取引を効率的に管理できます。

MQL5取引ツールキット(第3回):未決注文管理EX5ライブラリの開発
MQL5のコードやプロジェクトで、包括的な未決注文管理EX5ライブラリを開発して実装する方法を学びましょう。本記事では、広範な未決注文管理EX5ライブラリを作成する手順を紹介し、それをインポートおよび実装する方法を、取引パネルまたはグラフィカルユーザーインターフェース(GUI)の構築を通じて解説します。このEA注文パネルを使用すれば、チャートウィンドウ上のGUIから、指定されたマジックナンバーに関連する未決注文を直接オープン、監視、削除することが可能です。

ニューラルネットワークが簡単に(第96回):マルチスケール特徴量抽出(MSFformer)
長期的な依存関係と短期的な特徴量の効率的な抽出と統合は、時系列分析において依然として重要な課題です。正確で信頼性の高い予測モデルを作成するためには、それらを適切に理解し、統合することが必要です。

スマートマネーコンセプト(オーダーブロック)とフィボナッチ指標を組み合わせた最適な取引エントリー方法
SMC(オーダーブロック)は、機関投資家トレーダーが大規模なな売買を開始する主要領域です。価格が大きく動いた後、フィボナッチは直近のスイングハイからスイングローへの潜在的なリトレースメントを特定し、最適な取引エントリーを特定するのに役立ちます。

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第1回):パネルの設定
この記事では、取引操作を効率化するために設計されたMQL5のControlsクラスを使用して、インタラクティブな取引ダッシュボードを作成します。パネルには、タイトル、[Trade]、[Close]、[Information]のナビゲーションボタン、取引の実行とポジションの管理用の専用アクションボタンが表示されます。この記事を読み終える頃には、今後の記事でさらに機能強化するための基礎パネルが完成しているはずです。

Connexusの本体(第4回):HTTP本体サポートの追加
この記事では、JSONやプレーンテキストなどのデータを送信するために不可欠な、HTTPリクエストにおける本体(ボディ)の概念について探りました。適切なヘッダを使った正しい使い方を議論し、説明しました。また、Connexusライブラリの一部であるChttpBodyクラスを導入し、リクエストの本体の処理を簡素化しました。

ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減
Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。

ニューラルネットワークが簡単に(第94回):入力シーケンスの最適化
時系列を扱うときは、常にソースデータを履歴シーケンスで使用します。しかし、これが最善の選択肢なのでしょうか。入力データの順序を変更すると、訓練されたモデルの効率が向上するという意見があります。この記事では、入力シーケンスを最適化する方法の1つを紹介します。

独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニング(微調整)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

知っておくべきMQL5ウィザードのテクニック(第42回):ADXオシレーター
ADXは、一部のトレーダーが一般的なトレンドの強さを測定するために使用する、もう1つの比較的人気のあるテクニカルインジケーターです。これは他の2つのインジケーターの組み合わせとして機能し、オシレーターとして表示されます。この記事では、MQL5ウィザードアセンブリとそのサポートクラスを使用して、そのパターンについて説明します。

Connexusにおけるヘッダ(第3部):リクエスト用HTTPヘッダの使い方をマスターする
Connexusライブラリの開発を続けます。この章では、HTTPプロトコルにおけるヘッダの概念を探求し、ヘッダとは何か、何のためにあるのか、リクエストでどのように使うのかを説明します。APIとの通信で使用される主なヘッダを取り上げ、ライブラリでの設定方法の実践例を紹介します。

ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成
この記事では、ボリンジャーバンドを利用したピラニア戦略に基づいてMQL5でエキスパートアドバイザー(EA)を作成し、取引の有効性を高めます。この戦略の重要な原則、コーディングの実装、テストと最適化の方法について説明します。この知識によって、取引シナリオにEAを効果的に導入することが可能になります。

知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)
DQN (Deep-Q-Network)は強化学習アルゴリズムであり、機械学習モジュールの学習プロセスにおいて、次のQ値と理想的な行動を予測する際にニューラルネットワークを関与させます。別の強化学習アルゴリズムであるQ学習についてはすでに検討しました。そこでこの記事では、強化学習で訓練されたMLPが、カスタムシグナルクラス内でどのように使用できるかを示すもう1つの例を紹介します。

MQL5-Telegram統合エキスパートアドバイザーの作成(第7回):チャート上のインジケーター自動化のためのコマンド解析
この記事では、TelegramコマンドをMQL5と統合して、取引チャートへのインジケーターの追加を自動化する方法について解説します。ユーザーからのコマンドを解析し、MQL5で実行し、インジケーターベースの取引を円滑におこなうためのシステムをテストするプロセスについて説明します。

MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成する方法
MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成しましょう。HTTP POST経由で取引データを同期し、HTTPリクエストを使用して取得する方法を学習します。最終的には、取引を効果的かつ効率的に追跡するのに役立つ取引ジャーナルが手に入ります。

ニューラルネットワークが簡単に(第93回):周波数領域と時間領域における適応予測(最終回)
本稿では、時系列予測において2つのブロック(周波数と時間)の結果を適応的に組み合わせるATFNetモデルのアプローチの実装を継続します。

MQL5用スキャルピングオーダーフロー
このMetaTrader 5エキスパートアドバイザー(EA)は、高度なリスク管理を備えたスキャルピングオーダーフロー戦略を実装しています。複数のテクニカル指標を使用し、オーダーフローの不均衡に基づいて取引機会を特定します。バックテストは潜在的な収益性を示しているが、特にリスク管理と取引結果の比率において、さらなる最適化の必要性を強調しています。経験豊富なトレーダーに適していますが、本番運用の前に十分なテストと理解が必要です。

HTTPとConnexus(第2回):HTTPアーキテクチャとライブラリ設計の理解
この記事では、HTTPプロトコルの基礎について、主なメソッド(GET、POST、PUT、DELETE)、ステータスコード、URLの構造について説明します。さらに、HTTPリクエストにおけるURLとクエリパラメータの操作を容易にするCQueryParamとCURLクラスによるConexxusライブラリの構築の始まりも紹介します。

知っておくべきMQL5ウィザードのテクニック(第40回):Parabolic SAR(パラボリックSAR)
パラボリックSAR (Stop-and-Reversal)は、トレンドの確認と終了点を示す指標です。トレンドの見極めが遅れるため、その主な目的は、ポジションのトレーリングストップロスを位置づけることです。ウィザードで組み立てられるエキスパートアドバイザー(EA)のカスタムシグナルクラスを活用して、本当にEAのシグナルとして使えるかどうか調べてみました。

知っておくべきMQL5ウィザードのテクニック(第39回):RSI (Relative Strength Index)
RSIは、モメンタムオシレーターとして人気があり、最近の価格変動のペースと大きさを測定し、証券価格の過大評価と過小評価の状況を評価します。スピードと大きさに関するこれらの洞察は、反転ポイントを定義する上で鍵となります。このオシレーターを別のカスタムシグナルクラスで動作させ、そのシグナルの特徴を調べてみましょう。まず、ボリンジャーバンドについてのまとめから始めます。

多通貨エキスパートアドバイザーの開発(第13回):第2段階の自動化 - グループへの選択
自動最適化の第1段階はすでに実装されています。いくつかの基準に従ってさまざま銘柄と時間枠の最適化を実行し、各パスの結果に関する情報をデータベースに保存します。ここで、最初の段階で見つかったものから最適なパラメータセットのグループを選択します。

ニューラルネットワークが簡単に(第92回):周波数および時間領域における適応的予測
FreDF法の著者は、周波数領域と時間領域を組み合わせた予測の利点を実験的に確認しました。しかし、重みハイパーパラメータの使用は、非定常時系列には最適ではありません。この記事では、周波数領域と時間領域における予測の適応的組み合わせの方法について学びます。

ニューラルネットワークが簡単に(第91回):周波数領域予測(FreDF)
周波数領域における時系列の分析と予測を継続的に探求していきます。この記事では、これまでに学習した多くのアルゴリズムに追加できる、周波数領域でデータを予測する新しい方法について説明します。

MQL5-Telegram統合エキスパートアドバイザーの作成(第6回):レスポンシブなインラインボタンの追加
この記事では、インタラクティブなインラインボタンをMQL5エキスパートアドバイザー(EA)に統合し、Telegram経由でリアルタイムにコントロールできるようにします。各ボタンを押すたびに特定のアクションがトリガーされ、ユーザーにレスポンスが返されます。また、Telegramメッセージやコールバッククエリを効率的に処理するための関数もモジュール化します。

知っておくべきMQL5ウィザードのテクニック(第38回):ボリンジャーバンド
ボリンジャーバンドは、多くのトレーダーが手動で取引を発注し、決済するために使用する、非常に一般的なエンベロープ指標です。この指標が生成する可能性のあるシグナルをできるだけ多く検討し、ウィザードで組み立てたエキスパートアドバイザー(EA)でどのように使用できるかを見ていきます。