Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
Итоги MQL5 Маркета за 2 квартал 2013 года
Итоги MQL5 Маркета за 2 квартал 2013 года

Итоги MQL5 Маркета за 2 квартал 2013 года

За полтора года успешной работы MQL5 Маркет стал крупнейшим трейдерским магазином торговых стратегий и технических индикаторов. В нем опубликовано около 800 торговых приложений от 350 разработчиков со всего мира. При этом трейдеры уже купили и установили в свои терминалы MetaTrader 5 свыше 100 000 торговых программ.
Прочие классы в библиотеке DoEasy (Часть 72): Отслеживание и фиксация параметров объектов-чартов в коллекции
Прочие классы в библиотеке DoEasy (Часть 72): Отслеживание и фиксация параметров объектов-чартов в коллекции

Прочие классы в библиотеке DoEasy (Часть 72): Отслеживание и фиксация параметров объектов-чартов в коллекции

В статье завершим работу над классами объектов-чартов и их коллекцией. Сделаем автоматическое отслеживание изменения свойств чартов и их окон, а также сохранение новых параметров в свойства объекта. Такая доработка позволит в будущем сделать событийный функционал для всей коллекции чартов.
preview
Регрессионные модели библиотеки Scikit-learn и их экспорт в ONNX

Регрессионные модели библиотеки Scikit-learn и их экспорт в ONNX

В данной статье мы рассмотрим применение регрессионных моделей пакета Scikit-learn, попробуем их сконвертировать в ONNX-формат и использовать полученные модели в программах на MQL5. Также мы сравним точность работы оригинальных моделей и их ONNX-версий для float и double. Кроме того, мы рассмотрим ONNX-представление регресионных моделей, это позволит лучше понять их внутреннее устройство и принцип работы.
Библиотека для простого и быстрого создания программ для MetaTrader (Часть VII): События срабатывания StopLimit-ордеров, подготовка функционала для событий модификации ордеров и позиций
Библиотека для простого и быстрого создания программ для MetaTrader (Часть VII): События срабатывания StopLimit-ордеров, подготовка функционала для событий модификации ордеров и позиций

Библиотека для простого и быстрого создания программ для MetaTrader (Часть VII): События срабатывания StopLimit-ордеров, подготовка функционала для событий модификации ордеров и позиций

В предыдущих статьях мы начали создавать большую кроссплатформенную библиотеку, целью которой является упростить создание программ для платформы MetaTrader 5 и MetaTrader 4. В шестой части мы научили библиотеку работать с позициями на счетах с типом "неттинг". В данной части сделаем отслеживание событий срабатывания StopLimit-ордеров и подготовим функционал для отслеживания событий модификации рыночных ордеров и позиций.
Популяционные алгоритмы оптимизации
Популяционные алгоритмы оптимизации

Популяционные алгоритмы оптимизации

Вводная статья об алгоритмах оптимизации (АО). Классификация. В статье предпринята попытка создать тестовый стенд (набор функций), который послужит в дальнейшем для сравнения АО между собой, и, даже, возможно, выявления самого универсального алгоритма из всех широко известных.
preview
Модель движения цены и ее основные положения (Часть 1): Простейший вариант  модели  и его  приложения

Модель движения цены и ее основные положения (Часть 1): Простейший вариант модели и его приложения

Представлены основы математически строгой теории движения цены и функционирования рынка. Строгой математической теории движения цены до настоящего момента еще не было создано, а имелся только ряд неподкрепленных ни статистикой, ни теорией предположений типа, что после таких-то паттернов цена движется так-то.
Работа с таймсериями в библиотеке DoEasy (Часть 45): Мультипериодные индикаторные буферы
Работа с таймсериями в библиотеке DoEasy (Часть 45): Мультипериодные индикаторные буферы

Работа с таймсериями в библиотеке DoEasy (Часть 45): Мультипериодные индикаторные буферы

В статье начнём доработку объектов-индикаторных буферов и класса коллекции буферов для работы в мультипериодном и мультисимвольном режимах. В данной статье рассмотрим работу объектов-буферов для получения и вывода данных с любого таймфрейма на текущий график текущего символа.
preview
Популяционные алгоритмы оптимизации: Муравьиная Колония (Ant Colony Optimization - ACO)

Популяционные алгоритмы оптимизации: Муравьиная Колония (Ant Colony Optimization - ACO)

В этот раз разберём алгоритм оптимизации Муравьиная Колония. Алгоритм очень интересный и неоднозначный. Попытка создания нового типа ACO.
preview
Нейросети — это просто (Часть 20): Автоэнкодеры

Нейросети — это просто (Часть 20): Автоэнкодеры

Мы продолжаем изучение алгоритмов обучения без учителя. Возможно, у читателя может возникнуть вопрос об соответствии последних публикаций теме нейронных сетей. В новой статье мы возвращаемся к использованию нейронных сетей.
Библиотека для простого и быстрого создания программ для MetaTrader (Часть VIII): События модификации ордеров и позиций
Библиотека для простого и быстрого создания программ для MetaTrader (Часть VIII): События модификации ордеров и позиций

Библиотека для простого и быстрого создания программ для MetaTrader (Часть VIII): События модификации ордеров и позиций

В предыдущих статьях мы начали создавать большую кроссплатформенную библиотеку, целью которой является упростить написание программ для платформ MetaTrader 5 и MetaTrader 4. В седьмой части мы добавили отслеживание событий срабатывания StopLimit-ордеров и подготовили функционал для отслеживания остальных событий, происходящих с ордерами и позициями. В данной статье сделаем класс для отслеживания событий модификации рыночных ордеров и позиций.
preview
Модель движения цены и ее основные положения. (Часть 3): Расчет оптимальных параметров  биржевой игры

Модель движения цены и ее основные положения. (Часть 3): Расчет оптимальных параметров биржевой игры

В рамках разработанного автором инженерного подхода, основанного на теории вероятности, находятся условия открытия прибыльной позиции и рассчитываются оптимальные – максимализирующие прибыль - значения тейкпрофита и стоплосса.
Стать хорошим программистом (Часть 2): избавляемся еще от пяти привычек на пути к лучшему программированию на MQL5
Стать хорошим программистом (Часть 2): избавляемся еще от пяти привычек на пути к лучшему программированию на MQL5

Стать хорошим программистом (Часть 2): избавляемся еще от пяти привычек на пути к лучшему программированию на MQL5

Статья обязательна к прочтению для всех, кто хочет улучшить свою карьеру программиста. Цель этой серии статей — помочь любому читателю, даже опытному, улучшить навыки программирования. Описанные в статье идеи работают как для начинающих MQL5-программистов, так и для профессионалов.
preview
Кластеризация временных рядов в причинно-следственном выводе

Кластеризация временных рядов в причинно-следственном выводе

Алгоритмы кластеризации в машинном обучении — это важные алгоритмы обучения без учителя, которые позволяют разделять исходные данные на группы с похожими наблюдениями. Используя эти группы, можно проводить анализ рынка для конкретного кластера, искать наиболее устойчивые кластеры на новых данных, а также делать причинно-следственный вывод. В статье предложен авторский метод кластеризации временных рядов на языке Python.
preview
Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)

Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)

Сегодня изучим алгоритм искусственной пчелиной колонии. Дополним наши знания новыми принципами исследования функциональных пространств. В данной статье я расскажу о моей интерпретации классического варианта алгоритма.
preview
Машинное обучение и Data Science (Часть 10): Гребневая регрессия

Машинное обучение и Data Science (Часть 10): Гребневая регрессия

Гребневая регрессия (ридж-регрессия) — это простой метод для уменьшения сложности модели и борьбы с подгонкой, которая может возникнуть в результате простой линейной регрессии.
Работа с таймсериями в библиотеке DoEasy (Часть 41): Пример мультисимвольного мультипериодного индикатора
Работа с таймсериями в библиотеке DoEasy (Часть 41): Пример мультисимвольного мультипериодного индикатора

Работа с таймсериями в библиотеке DoEasy (Часть 41): Пример мультисимвольного мультипериодного индикатора

В статье рассмотрим пример создания мультисимвольного мультипериодного индикатора с использованием классов таймсерий библиотеки DoEasy, отображающего в подокне график выбранной валютной пары с выбранного таймфрейма в виде японских свечей. Немного доработаем классы библиотеки и создадим отдельный файл для хранения перечислений для входных параметров программ и выбора языка компиляции.
preview
Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

В этой статье рассмотрим алгоритм оптимизации "Алгоритм обезьян" (MA). Способность этих подвижных животных преодолевать сложные препятствия и добираться до самых труднодоступных вершин деревьев легли в основу идеи алгоритма MA.
preview
Советы профессионального программиста (Часть III): Логирование. Подключение к системе сбора и анализа логов Seq

Советы профессионального программиста (Часть III): Логирование. Подключение к системе сбора и анализа логов Seq

Реализация класса Logger для унификации (структурирования) сообщений, выводимых в журнал эксперта. Подключение к системе сбора и анализа логов Seq. Наблюдение за сообщениями в онлайн режиме.
Библиотека для простого и быстрого создания программ для MetaTrader (Часть XVII): Интерактивность объектов библиотеки
Библиотека для простого и быстрого создания программ для MetaTrader (Часть XVII): Интерактивность объектов библиотеки

Библиотека для простого и быстрого создания программ для MetaTrader (Часть XVII): Интерактивность объектов библиотеки

Сегодня доведём до логического завершения функционал базового объекта всех объектов библиотеки, который позволит любому объекту библиотеки, созданному на его основе, интерактивно взаимодействовать с пользователем. Например, можно установить максимально приемлемый размер спреда для открытия позиции и значение уровня цены, при пересечении которого нам будет послано событие от объекта-символа в программу о сигнале по размеру спреда и пересечению ценой контролируемого уровня.
Работа с таймсериями в библиотеке DoEasy (Часть 46): Мультипериодные, мультисимвольные индикаторные буферы
Работа с таймсериями в библиотеке DoEasy (Часть 46): Мультипериодные, мультисимвольные индикаторные буферы

Работа с таймсериями в библиотеке DoEasy (Часть 46): Мультипериодные, мультисимвольные индикаторные буферы

В статье доработаем классы объектов индикаторных буферов для работы в мультисимвольном режиме. Таким образом у нас будет готово всё для создания в своих программах мультисимвольных мультипериодных индикаторов. Добавим недостающий функционал объектам расчётных буферов, что позволит создавать мультисимвольные мультипериодные стандартные индикаторы.
Горная карта, или График "Айсберг"
Горная карта, или График "Айсберг"

Горная карта, или График "Айсберг"

Как вам идея добавить новый тип графика в платформу MetaTrader 5? Многие говорят, что в ней не хватает несколько вещей, которые есть в других платформах. Но на самом деле MetaTrader 5 — очень практичная платформа, которая позволяет делать то, что невозможно сделать во многих других платформах, или по крайней мере, в них это сделать не так легко.
Работа с таймсериями в библиотеке DoEasy (Часть 42): Класс объекта абстрактного индикаторного буфера
Работа с таймсериями в библиотеке DoEasy (Часть 42): Класс объекта абстрактного индикаторного буфера

Работа с таймсериями в библиотеке DoEasy (Часть 42): Класс объекта абстрактного индикаторного буфера

С данной статьи начнём делать классы индикаторных буферов для библиотеки DoEasy. Сегодня создадим базовый класс абстрактного буфера, который будет являться основой для создания различных типов классов индикаторных буферов.
Работа с таймсериями в библиотеке DoEasy (Часть 44): Класс-коллекция объектов индикаторных буферов
Работа с таймсериями в библиотеке DoEasy (Часть 44): Класс-коллекция объектов индикаторных буферов

Работа с таймсериями в библиотеке DoEasy (Часть 44): Класс-коллекция объектов индикаторных буферов

В статье рассмотрим создание класса-коллекции объектов индикаторных буферов и протестируем возможности создания любого количества буферов для программ-индикаторов и возможности работы с ними (максимальное количество буферов, которые можно создать в MQL-индикаторах - 512 буферов).
preview
Создание самооптимизирующихся советников на языках MQL5 и Python (Часть II): Настройка глубоких нейронных сетей

Создание самооптимизирующихся советников на языках MQL5 и Python (Часть II): Настройка глубоких нейронных сетей

Модели машинного обучения имеют различные настраиваемые параметры. В этой серии статей мы рассмотрим, как настроить ИИ-модели в соответствии с конкретным рынком с помощью библиотеки SciPy.
preview
Анализируем причины неудач торговых советников

Анализируем причины неудач торговых советников

В этой статье мы проанализируем данные по валютам, чтобы понять, почему советники могут показывать хорошие результаты на одних интервалах и при этом плохо работают на других.
Работа с таймсериями в библиотеке DoEasy (Часть 47): Мультипериодные мультисимвольные стандартные индикаторы
Работа с таймсериями в библиотеке DoEasy (Часть 47): Мультипериодные мультисимвольные стандартные индикаторы

Работа с таймсериями в библиотеке DoEasy (Часть 47): Мультипериодные мультисимвольные стандартные индикаторы

В статье начнём разработку методов работы со стандартными индикаторами, что в итоге позволит создавать мультисимвольные мультипериодные стандартные индикаторы на базе классов библиотеки. Также добавим в классы таймсерий событие "Пропущенные бары" и разгрузим код основной программы, переместив из неё функции подготовки библиотеки в класс CEngine.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 5): Цепи Маркова

Возможности Мастера MQL5, которые вам нужно знать (Часть 5): Цепи Маркова

Цепи Маркова — это мощный математический инструмент, который можно использовать для моделирования и прогнозирования данных временных рядов в различных областях, включая финансы. При моделировании и прогнозировании финансовых временных рядов цепи Маркова часто используются для моделирования эволюции финансовых активов с течением времени, таких как цены акций или обменные курсы. Одними из основных преимуществ моделей цепей Маркова являются их простота и удобство использования.
preview
Работа с матрицами и векторами в MQL5

Работа с матрицами и векторами в MQL5

Для решения математических задач в MQL5 были добавлены матрицы и векторы. Новые типы имеют встроенные методы для написания краткого и понятного кода, который близок к математической записи. Массивы — это хорошо, но матрицы во многих случаях лучше.
preview
Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)

Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)

В прошлой статье мы познакомились с алгоритмом работы автоэнкодера. Как и любой другой алгоритм, он имеет свои достоинства и недостатки. В оригинальной реализации автоэнкодер выполняет задачу максимально разделить объекты из обучающей выборки. А о том, как бороться с некоторыми его недостатками мы поговорим в этой статье.
preview
Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Рассмотрим метод оптимизации "Поиск с помощью светлячкового алгоритма" (FA). Из аутсайдера путем модификации алгоритм превратился в настоящего лидера рейтинговой таблицы.
Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен
Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен

Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен

В статье создадим два класса - класс объекта-снимка стакана цен и класс объекта-серии снимков стакана цен и протестируем создание серии данных стакана цен.
Прочие классы в библиотеке DoEasy (Часть 71): События коллекции объектов-чартов
Прочие классы в библиотеке DoEasy (Часть 71): События коллекции объектов-чартов

Прочие классы в библиотеке DoEasy (Часть 71): События коллекции объектов-чартов

В статье создадим функционал отслеживания некоторых событий объектов-чартов — добавление и удаление графиков символов, добавление и удаление подокон на график, а также добавление/удаление/изменение индикаторов в окнах чартов.
Работа с таймсериями в библиотеке DoEasy (Часть 40): Индикаторы на основе библиотеки - реалтайм обновление данных
Работа с таймсериями в библиотеке DoEasy (Часть 40): Индикаторы на основе библиотеки - реалтайм обновление данных

Работа с таймсериями в библиотеке DoEasy (Часть 40): Индикаторы на основе библиотеки - реалтайм обновление данных

В статье рассмотрим создание простого мультипериодного индикатора на основе библиотеки DoEasy. Доработаем классы таймсерий для получения данных с любых таймфреймов для отображения их на текущем периоде графика.
preview
Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)

Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)

Следующий алгоритм, который рассмотрим — оптимизация поиском кукушки с использованием полётов Леви. Это один из новейших алгоритмов оптимизации и новый лидер в рейтинговой таблице.
preview
Алгоритм докупки: математическая модель увеличения эффективности

Алгоритм докупки: математическая модель увеличения эффективности

В данной статье мы будем использовать алгоритм докупки, как путеводитель в мир более глубокого понимания эффективности торговых систем и начнем работать над общими принципами усиления эффективности торговли с помощью математики и логики а также применим самые нестандартные методы увеличения эффективности в контексте использования абсолютно любой торговой системы.
preview
Машинное обучение и Data Science (Часть 03): Матричная регрессия

Машинное обучение и Data Science (Часть 03): Матричная регрессия

В этот раз мы будем создавать модели с помощью матриц — они дают большую гибкость и позволяют создавать мощные модели, которые могут обрабатывать не только пять независимых переменных, но и множество других, насколько позволяют пределы вычислительных возможностей компьютера. Статья будет очень интересной, это точно.
preview
Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Поиск косяком рыб (FSS) — новый современный алгоритм оптимизации, вдохновленный поведением рыб в стае, большинство из которых, до 80%, плавают организовано в сообществе сородичей. Доказано, что объединения рыб играют важную роль в эффективности поиска пропитания и защиты от хищников.
Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика
Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика

Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика

В статье продолжим разрабатывать класс объекта-чарта. Добавим к нему список объектов-окон графика, в которых в свою очередь будут доступны списки индикаторов, размещённых в них.
preview
Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.
preview
Нейросети — это просто (Часть 17): Понижение размерности

Нейросети — это просто (Часть 17): Понижение размерности

Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.