Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Алгоритм оптимизации сновидениями — Dream Optimization Algorithm (DOA)

Алгоритм оптимизации сновидениями — Dream Optimization Algorithm (DOA)

Популяционный алгоритм оптимизации, вдохновленный спорным и малоизученным феноменом — механизмом человеческих сновидений. Группы агентов с разной "памятью", косинусоидальная модуляция движения и необычное распределение фаз 99/1 — узнайте, как эти особенности влияют на эффективность оптимизации ваших торговых стратегий.
preview
Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Революционный подход к машинному обучению в трейдинге через квантовые вычисления. Статья демонстрирует практическую реализацию адаптивной системы QRC с постоянным дообучением для прогнозирования рыночных движений в реальном времени.
preview
Алгоритм дуэлянта — Duelist Algorithm

Алгоритм дуэлянта — Duelist Algorithm

Что если бы ваши торговые стратегии могли учиться друг у друга, как настоящие бойцы? Duelist Algorithm — новый метод оптимизации, где параметры торговых систем буквально сражаются в дуэлях за право называться лучшими.
preview
Моделирование рынка (Часть 04): Создание класса C_Orders (I)

Моделирование рынка (Часть 04): Создание класса C_Orders (I)

В данной статье мы начнем создание класса C_Orders, чтобы иметь возможность отправлять ордеры на торговый сервер. Мы будем делать это понемногу, поскольку наша цель состоит в том, чтобы подробно объяснить, как это будет происходить с помощью системы обмена сообщениями.
preview
Машинное обучение и Data Science (Часть 32): Как поддерживать актуальность AI-моделей с онлайн-обучением

Машинное обучение и Data Science (Часть 32): Как поддерживать актуальность AI-моделей с онлайн-обучением

В постоянно меняющемся мире трейдинга адаптация к изменениям на рынке — это просто необходимость. Каждый день появляются новые закономерности и тенденции, из-за чего даже самым продвинутым моделям машинного обучения становится сложно оставаться эффективными в меняющихся условиях. В этой статье мы поговорим о том, как поддерживать актуальность моделей и их способность реагировать на новые рыночные данные с помощью автоматического дообучения.
preview
Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Статья исследует революционную архитектуру нейронной сети Mamba/SSM для прогнозирования финансовых временных рядов. Представлена полная реализация на MQL5 современной альтернативы Transformer с линейной сложностью O(N) вместо квадратичной O(N²). Детально рассмотрены селективные State Space Models, hardware-aware оптимизации, patching техники и продвинутые методы обучения AdamW. Включены практические результаты тестирования, показавшие увеличение точности с 62% до 71% при снижении времени обучения с 45 до 8 минут. Представлен готовый торговый советник с автообучением и адаптивным риск-менеджментом для MetaTrader 5.
preview
Моделирование рынка (Часть 03): Вопрос производительности

Моделирование рынка (Часть 03): Вопрос производительности

Часто нам приходится делать шаг назад, а затем двигаться вперед. В этой статье мы покажем все изменения, необходимые для того, чтобы не нарушить работу индикаторов Mouse и Chart Trade. В качестве бонуса расскажем о других изменениях, произошедших в других заголовочных файлах, которые будут широко использоваться в будущем.
preview
Применение ансамблевых методов для задач классификации на языке MQL5

Применение ансамблевых методов для задач классификации на языке MQL5

В данной статье мы представляем реализацию нескольких ансамблевых классификаторов на языке MQL5 и рассматриваем их эффективность в различных ситуациях.
preview
Риск-менеджер для торговых роботов (Часть I): Включаемый файл контроля рисков для советников

Риск-менеджер для торговых роботов (Часть I): Включаемый файл контроля рисков для советников

Трейдинг характеризуется высокими требованиями к дисциплине риск-менеджмента. Настоящая работа представляет анализ основных причин неудач трейдеров и предлагает техническое решение в виде класса CEnhancedRiskManager для платформы MQL5. Включает практическое тестирование на агрессивном сеточном советнике.
preview
Моделирование рынка (Часть 02): Кросс-ордера (II)

Моделирование рынка (Часть 02): Кросс-ордера (II)

В отличие от того, что было в предыдущей статье, здесь мы осуществим проверку опции выбора на советнике. Хотя это еще не окончательное решение, но пока этого будет достаточно. С помощью данной статьи, вы сможете понять, как реализовать одно из возможных решений.
preview
Создание прибыльной торговой системы (Часть 1): Количественный подход

Создание прибыльной торговой системы (Часть 1): Количественный подход

Многие трейдеры оценивают стратегии, основываясь на краткосрочных результатах, часто слишком рано отказываясь от прибыльных систем. Однако долгосрочная прибыльность зависит от положительного ожидания посредством оптимизированного Win Rate и соотношения доходности к риску (Risk-Reward), а также дисциплины при выборе размера позиции. Эти принципы можно проверить с помощью метода Монте-Карло в Python с использованием проверенных на исторических данных показателей, чтобы оценить, является ли стратегия надежной или со временем может потерпеть неудачу.
preview
Моделирование рынка (Часть 01): Кросс-ордера (I)

Моделирование рынка (Часть 01): Кросс-ордера (I)

Сегодня мы начнем второй этап, на котором рассмотрим вопрос о системе репликации/моделирования рынка. Для начала мы покажем возможное решение для кросс-ордеров. Я покажу решение, но оно еще не окончательное, это будет вариант решения проблемы, решить которую предстоит в ближайшем будущем.
preview
Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5

Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5

В этой части мы рассмотрим реализацию ключевых интерфейсов библиотеки Гауссовских процессов на MQL5 — IKernel, ILikelihood и IInference. Также мы продемонстрируем её работу на синтетических данных и и напишем индикаторы для классификации и регрессии, демонстрирующие её работу в онлайн-режиме — с переобучением модели на каждом новом баре.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 4): Обработка больших данных

Интеграция MQL5 с пакетами обработки данных (Часть 4): Обработка больших данных

В статье рассматриваются передовые методы интеграции MQL5 с мощными инструментами обработки данных, а также уделяется внимание эффективной обработке больших данных для улучшения торгового анализа и принятия решений.
preview
Передача тиковых данных из MetaTrader в Python через сокеты с помощью MQL5-сервисов

Передача тиковых данных из MetaTrader в Python через сокеты с помощью MQL5-сервисов

Иногда не все можно запрограммировать на языке MQL5. И даже если возможно конвертировать существующие современные библиотеки в MQL5, на это уйдет много времени. В данной статье мы попытаемся обойти зависимость от Windows с помощью MQL5-сервисов — будем передавать тиковые данные (bid, ask и time) в приложение Python с помощью сокетов.
preview
Сингулярный спектральный анализ на MQL5

Сингулярный спектральный анализ на MQL5

Данная статья предназначена в качестве руководства для тех, кто не знаком с концепцией сингулярного спектрального анализа и хочет получить достаточно знаний, чтобы иметь возможность применять встроенные инструменты, доступные на MQL5.
preview
Алгоритм искусственного атома —  Artificial Atom Algorithm (A3)

Алгоритм искусственного атома — Artificial Atom Algorithm (A3)

Реализация алгоритма A3 на MQL5 — метаэвристического метода оптимизации, вдохновленного химическими процессами. Всего 2 настраиваемых параметра, компактность и небольшая популяция обеспечивают высокую скорость работы при достаточном качестве решений.
preview
Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Определить направление рынка может быть просто, но вот понять, когда входить на рынок, - гораздо более сложная задача. В этой статье серии "Разработка инструментария для анализа движения цен" я представлю еще один инструмент, который определяет точки входа и уровни стоп-лосса/тейк-профита. Для достижения этой цели использовался язык программирования MQL5.
preview
Разработка системы репликации (Часть 78): Новый Chart Trade (V)

Разработка системы репликации (Часть 78): Новый Chart Trade (V)

В данной статье мы рассмотрим, как нужно реализовывать часть кода получателя. Здесь мы реализуем версию советника, чтобы протестировать и узнать, как работает взаимодействие по протоколу. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте его как окончательное приложение, целью которого не является изучение представленных концепций.
preview
Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Создаем торговую систему с настоящим квантовым симулятором вместо математических аналогий. Система использует 3 виртуальных кубита, квантовые гейты и принципы суперпозиции для анализа рынков. Реализована как торговый советник для MetaTrader 5 на MQL5. Главное достижение — переход от имитации к реальным квантовым принципам обработки финансовой информации.
preview
Разработка советника для мониторинга точек входа в свинг-сделки

Разработка советника для мониторинга точек входа в свинг-сделки

Год близится к завершению, и в это время долгосрочные трейдеры часто подводят его итоги, анализируя историю рынка, его поведение и тренды с тем, чтобы оценить потенциал для будущих движений. В этой статье мы рассмотрим разработку советника для мониторинга долгосрочных сделок с помощью языка MQL5. Цель в том, чтобы справиться с такими проблемами, как упущение торговых возможностей по причине торговли вручную и отсутствия автоматизированных систем мониторинга. В качестве примера мы будем использовать одну из наиболее ярких торговых пар, чтобы эффективно определить стратегию для нашего решения и разработать его.
preview
Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Практика

Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Практика

Продолжение темы оптимизации научным сообществом. CoSO следует рассматривать не как готовое решение, а как перспективную исследовательскую платформу. При должной доработке, CoSO может найти свою нишу в задачах, где важна адаптивность и устойчивость к изменениям, а время вычислений не критично.
preview
Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Теория

Оптимизация сообществом ученых — Community of Scientist Optimization (CoSO): Теория

Секреты эффективной оптимизации торговых стратегий в метаэвристических подходах. Community of Scientist Optimization — новый популяционный алгоритм, вдохновленный механизмами функционирования научного сообщества. В отличие от традиционных природных метафор, CoSO моделирует уникальные аспекты человеческой научной деятельности: публикацию результатов в журналах, конкуренцию за гранты и формирование исследовательских групп.
preview
Квантовая нейросеть на MQL5 (Часть II): Обучаем нейросеть с обратным распространением ошибки на марковских матрицах ALGLIB

Квантовая нейросеть на MQL5 (Часть II): Обучаем нейросеть с обратным распространением ошибки на марковских матрицах ALGLIB

В статье представлена инновационная архитектура квантовой нейронной сети для алгоритмической торговли, объединяющая принципы квантовой механики с современными методами машинного обучения. Система включает квантовые эффекты (резонанс, интерференцию, декогеренцию), многоуровневую память различных временных масштабов, марковские цепи с библиотекой ALGLIB и адаптивное управление параметрами. Полная реализация выполнена на MQL5 с использованием встроенных типов matrix/vector, что устраняет барьеры внедрения в MetaTrader 5.
preview
Торговый инструментарий MQL5 (Часть 4): Разработка EX5-библиотеки для управления историей

Торговый инструментарий MQL5 (Часть 4): Разработка EX5-библиотеки для управления историей

Узнайте, как извлекать, обрабатывать, классифицировать, сортировать, анализировать и управлять закрытыми позициями, ордерами и историями сделок с помощью MQL5, создав обширную EX5-библиотеку управления историей с помощью подробного пошагового подхода.
preview
Алгоритм конкурентного обучения — Competitive Learning Algorithm (CLA)

Алгоритм конкурентного обучения — Competitive Learning Algorithm (CLA)

В статье представлен алгоритм конкурентного обучения (Competitive Learning Algorithm, CLA) — новый метаэвристический метод оптимизации, основанный на моделировании образовательного процесса. Алгоритм организует популяцию решений в виде классов со студентами и учителями, где агенты обучаются через три механизма: следование за лучшим в классе, использование личного опыта и обмен знаниями между классами.
preview
Новый подход к пользовательским критериям при оптимизациях (Часть 1): Примеры функций активации

Новый подход к пользовательским критериям при оптимизациях (Часть 1): Примеры функций активации

Это первая из серии статей, посвященных математическим аспектам создания пользовательских критериев с особым акцентом на нелинейных функциях, применяемых в нейросетях, MQL5-коде для реализации, а также на использования целевых и корректирующих смещений.
preview
Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Мы выходим за рамки простого просмотра проанализированных показателей на графиках и переходим к более широкой перспективе, которая включает интеграцию с Telegram. Это позволит отправлять важные результаты непосредственно на мобильное устройство через Telegram.
preview
Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

В данной статье мы рассмотрим модель классификации гауссовских процессов. Мы начнём с изучения её теоретических принципов, а затем перейдём к практической разработке библиотеки ГП на MQL5.
preview
Разработка инструментария для анализа движения цен (Часть 3): Советник Analytics Master

Разработка инструментария для анализа движения цен (Часть 3): Советник Analytics Master

Переход от простого торгового скрипта к полнофункциональному советнику может значительно улучшить ваш торговый опыт. Представьте себе систему, которая автоматически отслеживает графики, выполняет основные вычисления в фоновом режиме и предоставляет регулярные обновления каждые два часа. Советник способен анализировать ключевые показатели, имеющие решающее значение для принятия обоснованных торговых решений, гарантируя вам доступ к самой актуальной информации для эффективной корректировки ваших стратегий.
preview
Пользовательские символы MQL5: Создаем символ 3D-баров

Пользовательские символы MQL5: Создаем символ 3D-баров

В данной статье представлено детальное руководство по созданию инновационного индикатора 3DBarCustomSymbol.mq5, который генерирует пользовательские символы в MetaTrader 5, объединяющие цену, время, объем и волатильность в единое трехмерное представление. Рассматриваются математические основы, архитектура системы, практические аспекты реализации и применения в торговых стратегиях.
preview
Знакомство с кривыми рабочих характеристик приемника (ROC-кривыми)

Знакомство с кривыми рабочих характеристик приемника (ROC-кривыми)

ROC-кривые — графические представления, используемые для оценки эффективности классификаторов. Хотя графики ROC относительно просты, на практике при их использовании существуют распространенные заблуждения и подводные камни. Цель данной статьи — познакомить читателя с графиками ROC как инструментом для практикующих специалистов, стремящихся разобраться в оценке эффективности классификаторов.
preview
Экстремальная оптимизация — Extremal Optimization (EO)

Экстремальная оптимизация — Extremal Optimization (EO)

В данной статье рассматривается алгоритм Extremal Optimization (EO) — метод оптимизации, вдохновленный моделью самоорганизованной критичности Бака-Снеппена, где эволюция происходит через устранение наихудших компонентов системы. Модифицированная популяционная версия алгоритма демонстрирует отход от теоретических принципов в пользу практической эффективности, что приводит к созданию мощных вычислительных инструментов.
preview
Механизмы гейтинга в ансамблевом обучении

Механизмы гейтинга в ансамблевом обучении

В настоящей статье мы продолжаем наше исследование ансамблевых моделей, обсуждая концепцию ворот (gates), в частности, как они могут быть полезны при объединении выходных данных модели для повышения точности прогнозирования или обобщения модели.
preview
Тестирование надежности торговых советников

Тестирование надежности торговых советников

При разработке стратегии необходимо учитывать множество сложных деталей, на многие из которых не обращают особого внимания начинающие трейдеры. В результате многим трейдерам, включая меня, пришлось усвоить эти уроки на собственном горьком опыте. Данная статья основана на моих наблюдениях за распространенными подводными камнями, с которыми сталкивается большинство начинающих трейдеров при разработке стратегий на MQL5. В ней представлен ряд советов, хитростей и примеров, которые помогут определить причину дисквалификации советника и протестировать надежность наших собственных советников простым в применении способом. Цель состоит в том, чтобы обучить читателей, помогая им избежать мошенничества в будущем при покупке советников, а также предотвратить ошибки при разработке собственной стратегии.
preview
Прогнозирование трендов с помощью LSTM для стратегий следования за трендом

Прогнозирование трендов с помощью LSTM для стратегий следования за трендом

Долгая кратковременная память (LSTM) - это тип рекуррентной нейронной сети (RNN), предназначенной для моделирования последовательных данных путем эффективного учета долгосрочных зависимостей и решения проблемы исчезающего градиента. В настоящей статье мы рассмотрим, как использовать LSTM для прогнозирования будущих тенденций, повышая эффективность стратегий следования за трендами. В статье будет рассказано о внедрении ключевых концепций и стоящей за разработкой мотивации, извлечении данных из MetaTrader 5, использовании этих данных для обучения модели на Python, интеграции модели машинного обучения в MQL5, а также о результатах и перспективах на будущее на основании статистического бэк-тестирования.
preview
Ансамблевые методы для улучшения численного прогнозирования в MQL5

Ансамблевые методы для улучшения численного прогнозирования в MQL5

В этой статье мы представим реализацию нескольких методов ансамблевого обучения на языке MQL5 и исследуем их эффективность в различных сценариях.
preview
Оценка качества торговли спредами по факторам сезонности на рынке Форекс в терминале MetaTrader 5

Оценка качества торговли спредами по факторам сезонности на рынке Форекс в терминале MetaTrader 5

В статье рассматривается оценка качества сезонного торгового подхода на дневном таймфрейме — как для отдельных символов, так и для спредов. Особое внимание уделяется выявлению повторяющихся месячных циклов и возможностям их применения в торговле в рамках текущего года.
preview
Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций

Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций

При параллельной работе многих стратегий может возникнуть желание время от времени закрывать все открытые позиции и начинать работу стратегий заново. Уже написанный код позволяет реализовать такое поведение только вместе с ручными манипуляциями. Попробуем автоматизировать эту часть.
preview
Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Статья представляет новый подход к созданию торговых систем на основе квантовых принципов и искусственного интеллекта. Автор описывает разработку уникальной нейронной сети, которая выходит за рамки классического машинного обучения, объединяя квантовую механику с современными архитектурами ИИ.