Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Разработка системы репликации - Моделирование рынка (Часть 21):  ФОРЕКС (II)

Разработка системы репликации - Моделирование рынка (Часть 21): ФОРЕКС (II)

Мы продолжим строить систему для работы на рынке ФОРЕКС. Поэтому для того, чтобы решить эту проблему необходимо сначала объявить загрузку тиков до загрузки предыдущих баров. Это решает проблему, но в то же время заставляет пользователя следовать некой структуре в конфигурационном файле, которая, лично для меня, не имеет особого смысла. Причина в том, что, разработав программу, которая отвечает за анализ и выполнение того, что находится в конфигурационном файле, мы можем позволить пользователю объявлять нужные ему элементы в любом порядке.
preview
Интеграция скрытых марковских моделей в MetaTrader 5

Интеграция скрытых марковских моделей в MetaTrader 5

В этой статье мы продемонстрируем, как скрытые марковские модели, обученные с использованием Python, могут быть интегрированы в приложения MetaTrader 5. Скрытые марковские модели — это мощный статистический инструмент, используемый для моделирования временных рядов данных, где моделируемая система характеризуется ненаблюдаемыми (скрытыми) состояниями. Фундаментальная предпосылка HMM заключается в том, что вероятность нахождения в заданном состоянии в определенный момент времени зависит от состояния процесса в предыдущем временном интервале.
preview
Разработка системы репликации (Часть 38): Прокладываем путь (II)

Разработка системы репликации (Часть 38): Прокладываем путь (II)

Многие люди, которые считают себя программистами на MQL5, не обладают базовыми знаниями, которые мы изложим в этой статье. Многие считают MQL5 ограниченным инструментом, однако всё дело в недостатке знаний. Так что если вы чего-то не знаете, не стыдитесь этого. Лучше пусть вам будет стыдно за то, что вы не спросили. Простое принуждение MetaTrader 5 к запрету дублирования индикатора никоим образом не обеспечивает двустороннюю связь между индикатором и советником. Мы еще очень далеки от этого, но тот факт, что индикатор не дублируется на графике, дает нам некоторое утешение.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 08): Перцептроны

Возможности Мастера MQL5, которые вам нужно знать (Часть 08): Перцептроны

Перцептроны, сети с одним скрытым слоем, могут стать хорошим подспорьем для тех, кто знаком с основами автоматической торговли и хочет окунуться в нейронные сети. Мы шаг за шагом рассмотрим, как их можно реализовать в сборке классов сигналов, которая является частью классов Мастера MQL5 для советников.
preview
Индикатор прогнозирования ARIMA на MQL5

Индикатор прогнозирования ARIMA на MQL5

В данной статье мы создаем индикатор прогнозирования ARIMA на MQL5. Рассматривается, как модель ARIMA формирует прогнозы, её применимость к рынку Форекс и фондовому рынку в целом. Также объясняется, что такое авторегрессия AR, каким образом авторегрессионные модели используются для прогнозирования, и как работает механизм авторегрессии.
preview
Возвратные стратегии дневной торговли RSI2 Ларри Коннорса

Возвратные стратегии дневной торговли RSI2 Ларри Коннорса

Ларри Коннорс — известный трейдер и автор книг, наиболее известный своими работами в области количественной (алгоритмизированной) торговли и таких стратегий, как 2-периодный индекс относительной силы RSI (RSI2), помогающих определять краткосрочные состояния перекупленности и перепроданности рынка. В этой статье объясним сначала актуальность нашего исследования, затем воссоздадим три самые известные стратегии Коннорса на языке MQL5 и применим их к внутридневной торговле на индексе CFD S&P 500.
preview
От новичка до эксперта: Раскрываем скрытые уровни коррекции Фибоначчи

От новичка до эксперта: Раскрываем скрытые уровни коррекции Фибоначчи

В настоящей статье мы рассмотрим основанный на данных подход к обнаружению и проверке нестандартных уровней коррекции Фибоначчи, которые могут учитываться рынками. Мы представляем полный рабочий процесс, адаптированный для реализации на MQL5, начиная со сбора данных и определения баров или колебаний и заканчивая кластеризацией, проверкой статистических гипотез, бэктестингом и интеграцией в инструмент Фибоначчи на MetaTrader 5. Цель состоит в том, чтобы создать воспроизводимый конвейер, преобразующий отдельные наблюдения в статистически обоснованные торговые сигналы.
preview
Разработка системы репликации - Моделирование рынка (Часть 18):  Тики и еще больше тиков (II)

Разработка системы репликации - Моделирование рынка (Часть 18): Тики и еще больше тиков (II)

В данном случае предельно ясно, что метрики очень далеки от идеального времени создания 1-минутного бара. Так что это первое, что мы действительно исправим. Исправить проблему синхронизации не сложно. Каким бы невероятным это ни казалось, на самом деле всё довольно просто. Однако мы не внесли исправление в предыдущую статью, потому что целью было объяснить, как перенести в окно Обзора рынка тиковые данные, которые использовались для создания 1-минутных баров на графике.
preview
Гибридизация популяционных алгоритмов. Последовательная и параллельная схема

Гибридизация популяционных алгоритмов. Последовательная и параллельная схема

В статье мы погрузимся в мир гибридизации алгоритмов оптимизации, рассмотрев три ключевых типа: смешивание стратегий, последовательную и параллельную гибридизации. Мы проведем серию экспериментов, сочетая и тестируя соответствующие алгоритмы оптимизации.
preview
Теория категорий в MQL5 (Часть 15): Функторы с графами

Теория категорий в MQL5 (Часть 15): Функторы с графами

Статья продолжает серию о реализации теории категорий в MQL5, рассматривая функторы как мост между графами и множеством. Мы вновь обратимся к календарным данным и, несмотря на их ограничения в использовании тестера стратегий, обоснуем использование функторов в прогнозировании волатильности с помощью корреляции.
preview
Алгоритм оптимизации на основе искусственной экосистемы —  Artificial Ecosystem-based Optimization (AEO)

Алгоритм оптимизации на основе искусственной экосистемы — Artificial Ecosystem-based Optimization (AEO)

В статье рассматривается метаэвристический алгоритм AEO, который моделирует взаимодействия между компонентами экосистемы, создавая начальную популяцию решений и применяя адаптивные стратегии обновления, и подробно описываются этапы работы AEO, включая фазы потребления и разложения, а также различные стратегии поведения агентов. Статья знакомит с особенностями и преимуществами данного алгоритма.
preview
Быстрая интеграция большой языковой модели и MetaTrader 5 (Часть II): Файнтьюн на реальных данных, бэктест и онлайн-торговля модели

Быстрая интеграция большой языковой модели и MetaTrader 5 (Часть II): Файнтьюн на реальных данных, бэктест и онлайн-торговля модели

Статья описывает процесс файнтьюна языковой модели для трейдинга на основе реальных исторических данных из MetaTrader 5. Базовая модель, знающая лишь теоретический технический анализ, обучается на тысяче примеров реального поведения валютных пар (EURUSD, GBPUSD, USDCHF, USDCAD) за 180 дней. После обучения через Ollama модель начинает понимать специфику каждого инструмента.
preview
Квантовая нейросеть на MQL5 (Часть II): Обучаем нейросеть с обратным распространением ошибки на марковских матрицах ALGLIB

Квантовая нейросеть на MQL5 (Часть II): Обучаем нейросеть с обратным распространением ошибки на марковских матрицах ALGLIB

В статье представлена инновационная архитектура квантовой нейронной сети для алгоритмической торговли, объединяющая принципы квантовой механики с современными методами машинного обучения. Система включает квантовые эффекты (резонанс, интерференцию, декогеренцию), многоуровневую память различных временных масштабов, марковские цепи с библиотекой ALGLIB и адаптивное управление параметрами. Полная реализация выполнена на MQL5 с использованием встроенных типов matrix/vector, что устраняет барьеры внедрения в MetaTrader 5.
preview
Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

В этой статье мы рассмторим, как можно использовать обобщенный показатель Херста (Generalized Hurst Exponent) и тест коэффициента дисперсии (Variance Ratio) для анализа поведения ценовых рядов в MQL5.
preview
Теория категорий в MQL5 (Часть 3)

Теория категорий в MQL5 (Часть 3)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Анализ временных разрывов цен в MQL5 (Часть I): Создаем базовый индикатор

Анализ временных разрывов цен в MQL5 (Часть I): Создаем базовый индикатор

Анализ временных разрывов (таймгэпов) помогает трейдеру выявлять потенциальные точки разворота рынка. В статье рассматривается, что такое таймгэп, как его интерпретировать, а также каким образом с его помощью можно обнаружить вливание крупного объема в рынок.
preview
Теория категорий в MQL5 (Часть 11): Графы

Теория категорий в MQL5 (Часть 11): Графы

Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассмотрим, как теория графов может быть интегрирована с моноидами и другими структурами данных при разработке стратегии закрытия торговой системы.
preview
Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть II): Сборка и результаты

Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть II): Сборка и результаты

Во второй части статьи мы соберем химические операторы в единый алгоритм и представим подробный анализ результатов его работы. Узнаем, как метод оптимизации химическими реакциями (CRO) справился с вызовом в решении сложных задач на тестовых функциях.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 26): Скользящие средние и показатель Херста

Возможности Мастера MQL5, которые вам нужно знать (Часть 26): Скользящие средние и показатель Херста

Показатель Херста — это мера того, насколько сильно временной ряд автокоррелирует в долгосрочной перспективе. Предполагается, что он отражает долгосрочные свойства временного ряда и поэтому имеет определенный вес в анализе временных рядов даже за пределами экономических/финансовых временных рядов. Однако мы сосредоточимся на его потенциальной пользе для трейдеров, изучив, как этот показатель можно объединить со скользящими средними для формирования потенциально надежного сигнала.
preview
Теория категорий в MQL5 (Часть 19): Индукция квадрата естественности

Теория категорий в MQL5 (Часть 19): Индукция квадрата естественности

Мы продолжаем рассмотрение естественных преобразований, рассматривая квадратичную индукцию естественности. Небольшие ограничения на реализацию мультивалютности для экспертов, собранных с помощью мастера MQL5, означают, что мы демонстрируем свои возможности по классификации данных с помощью скрипта. В качестве основных областей применения рассматриваются классификация изменений цен и, соответственно, их прогнозирование.
preview
Реализация модели таблицы в MQL5: Применение концепции MVC

Реализация модели таблицы в MQL5: Применение концепции MVC

В статье рассмотрим процесс разработки модели таблицы на языке MQL5 с использованием архитектурной концепции MVC (Model-View-Controller) для разделения логики данных, представления и управления, что помогает создавать структурированный, гибкий и масштабируемый код. Рассмотрим реализацию классов для построения модели таблицы, включая использование связанных списков для хранения данных.
preview
Машинное обучение и Data Science (Часть 32): Как поддерживать актуальность AI-моделей с онлайн-обучением

Машинное обучение и Data Science (Часть 32): Как поддерживать актуальность AI-моделей с онлайн-обучением

В постоянно меняющемся мире трейдинга адаптация к изменениям на рынке — это просто необходимость. Каждый день появляются новые закономерности и тенденции, из-за чего даже самым продвинутым моделям машинного обучения становится сложно оставаться эффективными в меняющихся условиях. В этой статье мы поговорим о том, как поддерживать актуальность моделей и их способность реагировать на новые рыночные данные с помощью автоматического дообучения.
preview
Разработка системы репликации - Моделирование рынка (Часть 02): Первые эксперименты (II)

Разработка системы репликации - Моделирование рынка (Часть 02): Первые эксперименты (II)

В этот раз попробуем другой подход для достижения цели в 1 минуту. Однако эта задача не так проста, как можно подумать.
preview
Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)

Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)

Представляем вам алгоритм Artificial Cooperative Search (ACS). Этот инновационный метод использует бинарную матрицу и несколько динамичных популяций, основанных на мутуалистических отношениях и кооперации, для быстрого и точного нахождения оптимальных решений. Уникальный подход ACS к "хищникам" и "жертвам" позволяет добиваться отличных результатов в задачах численной оптимизации.
preview
Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы

Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы

В статье мы познакомимся с алгоритмом искусственного пчелиного улья (ABHA), разработанным в 2009 году. Алгоритм направлен на решение задач непрерывной оптимизации. Мы рассмотрим, как ABHA черпает вдохновение из поведения пчелиной колонии, где каждая пчела выполняет уникальную роль, что способствует более эффективному поиску ресурсов.
preview
Перестановка ценовых баров в MQL5

Перестановка ценовых баров в MQL5

В этой статье мы представляем алгоритм перестановки ценовых баров и подробно рассказываем, как тесты на перестановку (permutation tests) можно использовать для выявления случаев, когда эффективность стратегии была сфабрикована с целью обмануть потенциальных покупателей советников.
preview
Прогнозируем Ренко — бары при помощи ИИ CatBoost

Прогнозируем Ренко — бары при помощи ИИ CatBoost

Как использовать Ренко-бары вместе с ИИ? Рассмотрим Ренко-трейдинг на Форекс с точностью прогнозов до 59.27%. Исследуем преимущества Ренко-баров для фильтрации рыночного шума, узнаем, почему объемные показатели важнее ценовых паттернов, и как настроить оптимальный размер блока Ренко для EURUSD. Пошаговое руководство по интеграции CatBoost, Python и MetaTrader 5 для создания собственной системы прогнозирования Ренко Форекс. Идеально для трейдеров, стремящихся выйти за рамки традиционного технического анализа.
preview
Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Статья представляет новый подход к созданию торговых систем на основе квантовых принципов и искусственного интеллекта. Автор описывает разработку уникальной нейронной сети, которая выходит за рамки классического машинного обучения, объединяя квантовую механику с современными архитектурами ИИ.
preview
Разработка системы репликации (Часть 37): Прокладываем путь (I)

Разработка системы репликации (Часть 37): Прокладываем путь (I)

В этой статье мы начнем делать то, что хотелось сделать гораздо раньше. Однако из-за отсутствия "твердой почвы" я не чувствовал себя уверенно, чтобы представить вопрос публично. Теперь у меня есть основа для того, чтобы делать то, что мы начнем сейчас. Неплохо бы максимально сосредоточиться на понимании содержания этой статьи, и я говорю это не для того, чтобы вы просто это прочитали. Я хочу подчеркнуть, что если вы не поймете данную статью, то можете полностью отказаться от надежды понять содержание следующих статей.
preview
Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS)

Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS)

В статье рассматривается алгоритм AOS (Atomic Orbital Search), который использует концепции атомной орбитальной модели для моделирования поиска решений. Алгоритм основывается на вероятностных распределениях и динамике взаимодействий в атоме. В статье подробно обсуждаются математические аспекты AOS, включая обновление положений кандидатов решений и механизмы поглощения и выброса энергии. AOS открывает новые горизонты для применения квантовых принципов в вычислительных задачах, предлагая инновационный подход к оптимизации.
preview
Методы оптимизации библиотеки Alglib (Часть II)

Методы оптимизации библиотеки Alglib (Часть II)

В статье продолжим изучение оставшихся методов оптимизации из библиотеки ALGLIB, уделяя особое внимание их тестированию на сложных многомерных функциях. Это позволит нам не только оценить эффективность каждого из алгоритмов, но и выявить их сильные и слабые стороны в различных условиях.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 10): Нетрадиционная RBM

Возможности Мастера MQL5, которые вам нужно знать (Часть 10): Нетрадиционная RBM

Ограниченные машины Больцмана (Restrictive Boltzmann Machines, RBM) представляют собой на базовом уровне двухслойную нейронную сеть, способную выполнять неконтролируемую классификацию посредством уменьшения размерности. Мы используем ее основные принципы и посмотрим что случится, если мы перепроектируем и обучим ее нестандартно. Сможем ли мы получить полезный фильтр сигналов?
preview
Команда ИИ-агентов с ротацией по прибыли: Эволюция живой торговой системы в MQL5

Команда ИИ-агентов с ротацией по прибыли: Эволюция живой торговой системы в MQL5

Управление финансами как экосистема: семь ИИ-трейдеров с разными характерами и стратегиями вместо одного алгоритма. Они конкурируют за капитал, учатся на ошибках и принимают решения коллективно. Статья раскрывает принципы работы системы Modern RL Trader, где код обладает сознанием и эмоциями, создавая живой, эволюционирующий торговый разум.
preview
Создание вероятностного рыночно-нейтрального робота на основе распределения доходностей

Создание вероятностного рыночно-нейтрального робота на основе распределения доходностей

Рыночно-нейтральная торговая стратегия на основе эмпирического распределения доходностей представляет альтернативу классическим методам технического анализа, заменяя прогнозирование направления цены статистическим размещением ордеров в точках вероятного достижения. Статья подробно разбирает математический аппарат расчета перцентилей, алгоритмы взвешивания объемов позиций по вероятности срабатывания и механизмы адаптации к изменению рыночных условий через экспирацию сетки. Приводится полная реализация на MQL5.
preview
Разработка системы репликации - Моделирование рынка (Часть 12): Появление СИМУЛЯТОРА (II)

Разработка системы репликации - Моделирование рынка (Часть 12): Появление СИМУЛЯТОРА (II)

Разработка симулятора может оказаться гораздо интереснее, чем кажется. Сегодня мы сделаем еще несколько шагов в этом направлении, потому что всё становится интереснее.
preview
Разработка системы репликации - Моделирование рынка (Часть 14): Появление СИМУЛЯТОРА (IV)

Разработка системы репликации - Моделирование рынка (Часть 14): Появление СИМУЛЯТОРА (IV)

В этой статье мы продолжим этап разработки симулятора. Однако сейчас мы увидим, как эффективно создать движение типа «СЛУЧАЙНОЕ БЛУЖДАНИЕ». Этот тип движения весьма интригующий, поскольку служит основой всего, что происходит на рынке капитала. Кроме того, мы начнем понимать некоторые концепции, основополагающие для тех, кто проводит анализ рынка.
preview
Альтернативные показатели риска и доходности в MQL5

Альтернативные показатели риска и доходности в MQL5

В этой статье мы представим реализацию нескольких показателей доходности и риска, рассматриваемых как альтернативы коэффициенту Шарпа, и исследуем гипотетические кривые капитала для анализа их характеристик.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 14): Многоцелевое прогнозирование таймсерий с помощью STF

Возможности Мастера MQL5, которые вам нужно знать (Часть 14): Многоцелевое прогнозирование таймсерий с помощью STF

Пространственно-временное слияние (Spatial Temporal Fusion, STF), которое использует как "пространственные", так и временные метрики при моделировании данных, в первую очередь применяется в дистанционном обследовании и во многих других областях, связанных с визуализацией, для лучшего понимания нашего окружения. Основываясь на опубликованной статье, мы изучим потенциал этого подхода для трейдеров.
preview
Алгоритм на основе фракталов — Fractal-Based Algorithm (FBA)

Алгоритм на основе фракталов — Fractal-Based Algorithm (FBA)

Новый метаэвристический метод, основанный на фрактальном подходе к разделению пространства поиска для решения задач оптимизации. Алгоритм последовательно идентифицирует и разделяет перспективные области, создавая самоподобную фрактальную структуру, которая концентрирует вычислительные ресурсы на наиболее перспективных участках. Уникальный механизм мутации, направленный в сторону лучших решений, обеспечивает оптимальный баланс между исследованием и использованием пространства поиска, значительно повышая эффективность алгоритма.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 07): Дендрограммы

Возможности Мастера MQL5, которые вам нужно знать (Часть 07): Дендрограммы

Классификация данных для анализа и прогнозирования — очень разнообразная область машинного обучения с большим количеством подходов и методов. В этой статье рассматривается один из таких подходов, а именно агломеративная иерархическая классификация (Agglomerative Hierarchical Classification).