Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Пример стохастической оптимизации и оптимального управления

Пример стохастической оптимизации и оптимального управления

Настоящий советник, получивший название SMOC (что, вероятно, означает оптимальное управление стохастической моделью (Stochastic Model Optimal Control), является простым примером передовой алгоритмической торговой системы для MetaTrader 5. Он использует комбинацию технических индикаторов, прогностического контроля моделей и динамического управления рисками для принятия торговых решений. Советник включает в себя адаптивные параметры, определение размера позиции на основе волатильности и анализ трендов для оптимизации его работы в изменяющихся рыночных условиях.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 2): Машинное обучение и предиктивная аналитика

Интеграция MQL5 с пакетами обработки данных (Часть 2): Машинное обучение и предиктивная аналитика

В нашей серии статей об интеграции MQL5 с пакетами обработки данных мы подробно рассматриваем мощное сочетание машинного обучения и предиктивного анализа. Мы изучим, как беспрепятственно объединить MQL5 с популярными библиотеками машинного обучения, чтобы создавать сложные прогностические модели финансовых рынков.
preview
Оценка качества торговли спредами по факторам сезонности на рынке Форекс в терминале MetaTrader 5

Оценка качества торговли спредами по факторам сезонности на рынке Форекс в терминале MetaTrader 5

В статье рассматривается оценка качества сезонного торгового подхода на дневном таймфрейме — как для отдельных символов, так и для спредов. Особое внимание уделяется выявлению повторяющихся месячных циклов и возможностям их применения в торговле в рамках текущего года.
preview
Применение модели машинного обучения CatBoost в качестве фильтра для трендовых стратегий

Применение модели машинного обучения CatBoost в качестве фильтра для трендовых стратегий

CatBoost – это эффективная модель машинного обучения на основе деревьев, которая специализируется на принятии решений на основе статических признаков. Другие модели на основе деревьев, такие как XGBoost и Random Forest, обладают схожими характеристиками в плане надежности, интерпретируемости и способности работать со сложными паттернами. Эти модели имеют широкий спектр применения: от анализа признаков до управления рисками. В данной статье мы пройдемся по процедуре использования обученной модели CatBoost в качестве фильтра для классической трендовой стратегии на основе пересечения скользящих средних.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 34): Эмбеддинг цены с нетрадиционной RBM

Возможности Мастера MQL5, которые вам нужно знать (Часть 34): Эмбеддинг цены с нетрадиционной RBM

Ограниченные машины Больцмана (Restricted Boltzmann Machines, RBM) — форма нейронной сети, разработанная в середине 1980-х годов, когда вычислительные ресурсы были непомерно дорогими. Вначале она опиралась на выборку Гиббса (Gibbs Sampling) и контрастивную дивергенцию (Contrastive Divergence) с целью уменьшения размерности или выявления скрытых вероятностей/свойств во входных обучающих наборах данных. Мы рассмотрим, как обратное распространение ошибки (backpropagation) может работать аналогичным образом, когда RBM "встраивает" (embeds) цены в прогнозирующий многослойный перцептрон.
preview
Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга, как работает и как разрабатывается по шагам. Создаем алгоритм распознавания RGB-изображений графиков цен с механизмом внимания и двунаправленным LSTM-слоем. В результате получаем рабочую модель прогнозирования цены евро-доллара с точностью до 55% на валидационном участке.
preview
Разработка системы репликации (Часть 42): Проект Chart Trade (I)

Разработка системы репликации (Часть 42): Проект Chart Trade (I)

Давайте создадим что-нибудь поинтереснее. Не хочу портить сюрприз, поэтому следите за статьей, чтобы лучше понять. С самого начала этой серии о разработке системы репликации/моделирования, я говорил, что идея состоит в том, чтобы использовать платформу MetaTrader 5 одинаково как в разрабатываемой нами системе, так и на реальном рынке. Важно, чтобы это было сделано должным образом. Никто не хочет тренироваться и учиться сражаться, используя одни инструменты, в то время как во время боя ему придется пользоваться другими.
preview
Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Статья посвящена метаэвристическому алгоритму Atmosphere Clouds Model Optimization (ACMO), который моделирует поведение облаков для решения задач оптимизации. Алгоритм использует принципы генерации, движения и распространения облаков, адаптируясь к "погодным условиям" в пространстве решений. Статья раскрывает, как метеорологическая симуляция алгоритма находит оптимальные решения в сложном пространстве возможностей и подробно описывает этапы работы ACMO, включая подготовку "неба", рождение облаков, их перемещение и концентрацию дождя.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA

Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA

SARSA (State-Action-Reward-State-Action, состояние-действие-вознаграждение-состояние-действие) — еще один алгоритм, который можно использовать при реализации обучения с подкреплением. Рассмотрим, как можно реализовать этот алгоритм в качестве независимой модели (а не просто механизма обучения) в советниках, собранных в Мастере, аналогично тому, как мы это делали в случаях с Q-обучением и DQN.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 1): Расширенный анализ данных и статистическая обработка

Интеграция MQL5 с пакетами обработки данных (Часть 1): Расширенный анализ данных и статистическая обработка

Интеграция обеспечивает бесперебойный рабочий процесс, при котором необработанные финансовые данные из MQL5 можно импортировать в пакеты обработки данных, такие как Jupyter Lab, для расширенного анализа, включая статистическое тестирование.
preview
Создание панели торгового администратора на MQL5 (Часть I): Создание интерфейса обмена сообщениями

Создание панели торгового администратора на MQL5 (Часть I): Создание интерфейса обмена сообщениями

В данной статье рассматривается создание интерфейса обмена сообщениями для MetaTrader 5, предназначенного для системных администраторов, чтобы облегчить общение с другими трейдерами непосредственно внутри платформы. Недавняя интеграция социальных платформ с MQL5 позволяет быстро транслировать сигнал по разным каналам. Представьте, что вы можете проверять отправленные сигналы одним щелчком мыши — либо "ДА", либо "НЕТ". Читайте дальше, чтобы узнать больше.
preview
Разработка инструментария для анализа движения цен (Часть 3): Советник Analytics Master

Разработка инструментария для анализа движения цен (Часть 3): Советник Analytics Master

Переход от простого торгового скрипта к полнофункциональному советнику может значительно улучшить ваш торговый опыт. Представьте себе систему, которая автоматически отслеживает графики, выполняет основные вычисления в фоновом режиме и предоставляет регулярные обновления каждые два часа. Советник способен анализировать ключевые показатели, имеющие решающее значение для принятия обоснованных торговых решений, гарантируя вам доступ к самой актуальной информации для эффективной корректировки ваших стратегий.
preview
Тестирование надежности торговых советников

Тестирование надежности торговых советников

При разработке стратегии необходимо учитывать множество сложных деталей, на многие из которых не обращают особого внимания начинающие трейдеры. В результате многим трейдерам, включая меня, пришлось усвоить эти уроки на собственном горьком опыте. Данная статья основана на моих наблюдениях за распространенными подводными камнями, с которыми сталкивается большинство начинающих трейдеров при разработке стратегий на MQL5. В ней представлен ряд советов, хитростей и примеров, которые помогут определить причину дисквалификации советника и протестировать надежность наших собственных советников простым в применении способом. Цель состоит в том, чтобы обучить читателей, помогая им избежать мошенничества в будущем при покупке советников, а также предотвратить ошибки при разработке собственной стратегии.
preview
Разработка системы репликации (Часть 55): Модуль управления

Разработка системы репликации (Часть 55): Модуль управления

В этой статье мы реализуем индикатор управления, чтобы его можно было интегрировать в разрабатываемую систему обмена сообщениями. Несмотря на то, что это не очень сложно, необходимо понять некоторые детали инициализации этого модуля. Представленный здесь материал предназначен исключительно для учебных целей. Ни в коем случае он не должен рассматриваться как приложение, целью которого не является изучение и освоение показанных концепций.
preview
Применение локализованного отбора признаков на Python и MQL5

Применение локализованного отбора признаков на Python и MQL5

В настоящей статье рассматривается алгоритм отбора признаков, представленный в статье "Выбор локальных признаков для классификации данных» ('Local Feature Selection for Data Classification') Наргеса Арманфарда и соавторов (Narges Armanfard et al.). Алгоритм реализован на Python для построения моделей бинарных классификаторов, которые могут быть интегрированы с приложениями MetaTrader 5 для логического вывода.
preview
Разработка системы репликации (Часть 44): Проект Chart Trade (III)

Разработка системы репликации (Часть 44): Проект Chart Trade (III)

В предыдущей статье я объяснил, как можно управлять данными шаблона для их использования в OBJ_CHART. Там я лишь обозначил тему, не вдаваясь в подробности, поскольку в той версии работа была выполнена очень упрощенным способом. Это сделано для того, чтобы облегчить объяснение содержания, ведь несмотря на кажущуюся простоту многих вещей, некоторые из них не столь очевидны, а без понимания самой простой и основной части, вы не сможете по-настоящему разобраться в том, что мы делаем.
preview
Алгоритм верблюда — Camel Algorithm (CA)

Алгоритм верблюда — Camel Algorithm (CA)

Алгоритм верблюда, разработанный в 2016 году, моделирует поведение верблюдов в пустыне для решения оптимизационных задач, учитывая факторы температуры, запасов и выносливости. В данной работе представлена еще его модифицированная версия (CAm) с ключевыми улучшениями: применение гауссова распределения при генерации решений и оптимизация параметров эффекта оазиса.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 35): Регрессия опорных векторов

Возможности Мастера MQL5, которые вам нужно знать (Часть 35): Регрессия опорных векторов

Регрессия опорных векторов — это идеалистический способ поиска функции или "гиперплоскости" (hyper-plane), который наилучшим образом описывает взаимосвязь между двумя наборами данных. Мы попытаемся использовать его при прогнозировании временных рядов в пользовательских классах Мастера MQL5.
preview
Разработка системы репликации (Часть 45): Проект Chart Trade (IV)

Разработка системы репликации (Часть 45): Проект Chart Trade (IV)

Главное в этой статье — представление и объяснение класса C_ChartFloatingRAD. У нас есть индикатор Chart Trade, который работает довольно интересным образом. Как вы могли заметить, у нас на графике все еще достаточно небольшое количество объектов, и тем не менее, мы получили ожидаемое функционирование. Значения, присутствующие в индикаторе, можно редактировать. Вопрос в том, как это возможно? В этой статье все начнет проясняться.
preview
Создание Python-классов для торговли в MetaTrader 5, аналогичных представленным в MQL5

Создание Python-классов для торговли в MetaTrader 5, аналогичных представленным в MQL5

Python-пакет MetaTrader 5 предлагает простой способ создания торговых приложений для платформы MetaTrader 5 на языке Python. Будучи мощным и полезным инструментом данный модуль не так прост как язык программирования MQL5, когда дело касается разработки решений для алгоритмической торговли. В данной статье мы создадим классы для торговли, аналогичные предлагаемым в языке MQL5, чтобы создать схожий синтаксис и сделать разработку торговых роботов на Python такой же простой как и на MQL5.
preview
Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Продолжение исследования алгоритма хаотической оптимизации. Вторая часть статьи посвящена практическим аспектам реализации алгоритма, его тестированию и выводам.
preview
Создание Python-классов для торговли в MetaTrader 5, аналогичных представленным в MQL5

Создание Python-классов для торговли в MetaTrader 5, аналогичных представленным в MQL5

Python-пакет MetaTrader 5 предлагает простой способ создания торговых приложений для платформы MetaTrader 5 на языке Python. Будучи мощным и полезным инструментом данный модуль не так прост как язык программирования MQL5, когда дело касается разработки решений для алгоритмической торговли. В данной статье мы создадим классы для торговли, аналогичные предлагаемым в языке MQL5, чтобы создать схожий синтаксис и сделать разработку торговых роботов на Python такой же простой как и на MQL5.
preview
Разработка инструментария для анализа движения цен (Часть 1): Проектор графиков

Разработка инструментария для анализа движения цен (Часть 1): Проектор графиков

Настоящий проект направлен на использование алгоритма MQL5 для разработки комплексного набора инструментов анализа для MetaTrader 5. Эти инструменты — от скриптов и индикаторов до моделей искусственного интеллекта и советников — позволят автоматизировать процесс анализа рынка. Иногда такая разработка позволяет создавать инструменты, способные выполнять углубленный анализ без участия человека и прогнозировать результаты на соответствующих платформах. Ни одна возможность не будет упущена. Присоединяйтесь ко мне в рамках исследования процесса создания надежного набора пользовательских инструментов для анализа рынка. Начнем с разработки простой программы на MQL5, которую я назвал Chart Projector (Проектор графиков).
preview
Нейросимвольные системы в алготрейдинге: Объединение символьных правил и нейронных сетей

Нейросимвольные системы в алготрейдинге: Объединение символьных правил и нейронных сетей

Статья рассказывает об опыте разработки гибридной торговой системы, объединяющей классический технический анализ с нейронными сетями. Автор подробно разбирает архитектуру системы — от базового анализа паттернов и структуры нейросети до механизмов принятия торговых решений, делясь реальным кодом и практическими наблюдениями.
preview
Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5

Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5

В настоящей статье мы рассмотрим основы гауссовских процессов (ГП) как вероятностную модель машинного обучения и продемонстрируем ее применение в регрессионных задачах на примере синтетических данных.
preview
Функции активации нейронов при обучении: ключ к быстрой сходимости?

Функции активации нейронов при обучении: ключ к быстрой сходимости?

В данной работе представлено исследование взаимодействия различных функций активации с алгоритмами оптимизации в контексте обучения нейронных сетей. Особое внимание уделяется сравнению классического ADAM и его популяционной версии при работе с широким спектром функций активации, включая осциллирующие функции ACON и Snake. Используя минималистичную архитектуру MLP (1-1-1) и единичный обучающий пример, производится изоляция влияния функций активации на процесс оптимизации от других факторов. Предложен подход к контролю весов сети через границы функций активации и механизма отражения весов, что позволяет избежать проблем с насыщением и застоем в обучении.
preview
Причинно-следственный анализ временных рядов с помощью энтропии переноса

Причинно-следственный анализ временных рядов с помощью энтропии переноса

В этой статье обсудим, как можно применить статистические причинно-следственные связи при определении прогностических переменных. Мы рассмотрим связь между причинностью и энтропией переноса, а также представим код на MQL5 для обнаружения направленных переносов информации между двумя переменными.
preview
Торговый робот на языковой GPT-модели

Торговый робот на языковой GPT-модели

Статья представляет полную реализацию TimeGPT — специализированной архитектуры на основе Transformer для прогнозирования финансовых временных рядов на платформе MetaTrader 5. Рассмотрена адаптация механизма внимания для финансовых данных, селективная токенизация изменений цены, hardware-aware оптимизации и продвинутые техники обучения. Включены результаты практического тестирования, показавшие точность прогнозов 87% при горизонте 24 бара с временем обучения 15 минут на CPU. Представлен готовый торговый советник с автоматическим переобучением.
preview
От новичка до эксперта: Совместная отладка на MQL5

От новичка до эксперта: Совместная отладка на MQL5

Политика «решения проблем» может создать четкую программу для овладения сложными навыками, такими как программирование на MQL5. Такой подход позволяет сконцентрироваться на решении проблем, одновременно развивая свои навыки. Чем больше проблем вы решаете, тем более продвинутый опыт передается в ваш мозг. Лично я считаю, что отладка - это самый эффективный способ освоить программирование. Сегодня мы рассмотрим процесс очистки кода и обсудим лучшие методы преобразования запутанной программы в ясную и функциональную. Прочтите эту статью и откройте для себя ценную информацию.
preview
Прогнозирование трендов с помощью LSTM для стратегий следования за трендом

Прогнозирование трендов с помощью LSTM для стратегий следования за трендом

Долгая кратковременная память (LSTM) - это тип рекуррентной нейронной сети (RNN), предназначенной для моделирования последовательных данных путем эффективного учета долгосрочных зависимостей и решения проблемы исчезающего градиента. В настоящей статье мы рассмотрим, как использовать LSTM для прогнозирования будущих тенденций, повышая эффективность стратегий следования за трендами. В статье будет рассказано о внедрении ключевых концепций и стоящей за разработкой мотивации, извлечении данных из MetaTrader 5, использовании этих данных для обучения модели на Python, интеграции модели машинного обучения в MQL5, а также о результатах и перспективах на будущее на основании статистического бэк-тестирования.
preview
Возвратные стратегии дневной торговли RSI2 Ларри Коннорса

Возвратные стратегии дневной торговли RSI2 Ларри Коннорса

Ларри Коннорс — известный трейдер и автор книг, наиболее известный своими работами в области количественной (алгоритмизированной) торговли и таких стратегий, как 2-периодный индекс относительной силы RSI (RSI2), помогающих определять краткосрочные состояния перекупленности и перепроданности рынка. В этой статье объясним сначала актуальность нашего исследования, затем воссоздадим три самые известные стратегии Коннорса на языке MQL5 и применим их к внутридневной торговле на индексе CFD S&P 500.
preview
Алгоритм биржевого рынка — Exchange Market Algorithm (EMA)

Алгоритм биржевого рынка — Exchange Market Algorithm (EMA)

Статья посвящена подробному анализу алгоритма Exchange Market Algorithm (EMA), который вдохновлен поведением трейдеров на фондовом рынке. Алгоритм моделирует процесс торговли акциями, где участники рынка с разным уровнем успеха применяют различные стратегии для максимизации прибыли.
preview
Эволюционная стратегия адаптации ковариационной матрицы — Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Эволюционная стратегия адаптации ковариационной матрицы — Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Исследуем один из самых интересных алгоритмов без градиентной оптимизации, который учится понимать геометрию целевой функции. Рассмотрим классическую реализацию CMA-ES с небольшой модификацией — заменой нормального распределения на степенное. Детальный разбор математики алгоритма, практическая реализация и честный анализ: где CMA-ES непобедим, а где его лучше не применять.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Регуляризация — это форма штрафования функции потерь пропорционально дискретному весу, применяемому ко всем слоям нейронной сети. Мы оценим значимость некоторых форм регуляризации, протестировав советник, собранный в Мастере.
preview
Разработка системы репликации (Часть 54): Появление первого модуля

Разработка системы репликации (Часть 54): Появление первого модуля

В этой статье мы рассмотрим, как собрать первый из действительно функциональных модулей для использования в системе репликации/моделирования, который также будет иметь общее назначение, чтобы служить и другим целям. Мы говорим о модуле индикатора мыши.
preview
Разработка системы репликации (Часть 46): Проект Chart Trade (V)

Разработка системы репликации (Часть 46): Проект Chart Trade (V)

Устали тратить время на поиск того самого файла, который необходим для работы вашего приложения? Как насчет того, чтобы включить все в исполняемый файл? Так вы больше не будете тратить время на поиск необходимого. Знаю, что многие пользуются именно такой формой распространения и хранения вещей, но есть гораздо более подходящий способ. По крайней мере, что касается распространения исполняемых файлов и их хранения. Метод, который будет здесь представлен, может оказаться очень полезным, так как в качестве отличного помощника вы сможете использовать сам MetaTrader 5, а также MQL5. И это не так уж трудно и сложно для понимания.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 37): Регрессия гауссовских процессов с линейными ядрами и ядрами Матерна

Возможности Мастера MQL5, которые вам нужно знать (Часть 37): Регрессия гауссовских процессов с линейными ядрами и ядрами Матерна

Линейные ядра — простейшая матрица, используемая в машинном обучении для линейной регрессии и опорных векторных машин. Ядро Матерна (Matérn) представляет собой более универсальную версию радиальной базисной функции (Radial Basis Function, RBF), которую мы рассматривали в одной из предыдущих статей, и оно отлично подходит для отображения функций, которые не настолько гладкие, как предполагает RBF. Создадим специальный класс сигналов, который использует оба ядра для прогнозирования условий на покупку и продажу.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 46): Ишимоку

Возможности Мастера MQL5, которые вам нужно знать (Часть 46): Ишимоку

Ichimuko Kinko Hyo — известный японский индикатор, представляющий собой систему определения тренда. Как и в предыдущих статьях, мы рассмотрим этот индикатор с использованием паттернов и поделимся стратегиями и отчетами о тестировании, применив классы библиотеки Мастера MQL5.
preview
Диалектический поиск — Dialectic Search (DA)

Диалектический поиск — Dialectic Search (DA)

Представляем Диалектический Алгоритм (DA) — новый метод глобальной оптимизации, вдохновленный философской концепцией диалектики. Алгоритм использует уникальное разделение популяции на спекулятивных и практических мыслителей. Тестирование показывает впечатляющую производительность до 98% в задачах малой размерности и общую эффективность 57.95%. Статья объясняет эти показатели и представляет детальное описание алгоритма и результаты экспериментов на различных типах функций.
preview
Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Алгоритмическая торговая система, сочетающая анализ объема с методами машинного обучения, в частности с нейронными сетями LSTM. В отличие от традиционных торговых подходов, которые в первую очередь фокусируются на движении цен, эта система делает упор на паттернах объема и их производных для прогнозирования движений рынка. Методология включает в себя три основных компонента: анализ производных от объема (первые и вторые производные), прогнозы LSTM для паттернов объема и традиционные технические индикаторы.