Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Машинное обучение и Data Science (Часть 31): Применение моделей CatBoost в трейдинге

Машинное обучение и Data Science (Часть 31): Применение моделей CatBoost в трейдинге

Модели искусственного интеллекта CatBoost приобрели огромную популярность в сообществе машинного обучения благодаря их точности прогнозирования, эффективности и устойчивости к разрозненным и сложным наборам данных. В этой статье речь будет идти о том, как использовать эти модели применительно к рынку Форекс.
preview
Популяционные алгоритмы оптимизации: Алгоритм поиска системой зарядов (Charged System Search, CSS)

Популяционные алгоритмы оптимизации: Алгоритм поиска системой зарядов (Charged System Search, CSS)

В этой статье рассмотрим ещё один алгоритм оптимизации, инспирированный неживой природой - алгоритм поиска системой зарядов (CSS). Цель этой статьи - представить новый алгоритм оптимизации, основанный на принципах физики и механики.
preview
Разработка системы репликации (Часть 47): Проект Chart Trade (VI)

Разработка системы репликации (Часть 47): Проект Chart Trade (VI)

Наконец, наш индикатор Chart Trade начинает взаимодействовать с советником, позволяя передавать информацию в интерактивном режиме. Поэтому в этой статье мы доработаем индикатор, сделав его функциональным настолько, чтобы его можно было использовать вместе с каким-либо советником. Это позволит нам получить доступ к индикатору Chart Trade и работать с ним, как если бы он действительно был связан с советником. Но сделаем мы это гораздо более интересным способом чем ранее.
preview
Машинное обучение и Data Science (Часть 30): Тандем из сверточных (CNN) и рекуррентных (RNN) нейросетей для прогнозирования фондового рынка

Машинное обучение и Data Science (Часть 30): Тандем из сверточных (CNN) и рекуррентных (RNN) нейросетей для прогнозирования фондового рынка

В этой статье мы рассмотрим динамическую интеграцию сверточных нейронных сетей (CNN) и рекуррентных нейронных сетей (RNN) для задач прогнозирования фондового рынка. Для этого соединим способность CNN извлекать закономерности и эффективность RNN в обработке последовательных данных. Давайте посмотрим, как такая мощная комбинация может повысить точность и эффективность торговых алгоритмов.
preview
Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты

Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты

В этой статье мы продолжим изучение алгоритма искусственного пчелиного улья ABHA, углубляясь в написание кода и рассматривая оставшиеся методы. Напомним, что каждая пчела в модели представлена как индивидуальный агент, чье поведение зависит от внутренней и внешней информации, а также мотивационного состояния. Мы проведем тестирование алгоритма на различных функциях и подведем итоги, представив результаты в рейтинговой таблице.
preview
Разработка системы репликации - Моделирование рынка (Часть 22): ФОРЕКС (III)

Разработка системы репликации - Моделирование рынка (Часть 22): ФОРЕКС (III)

Хотя это уже третья статья об этом, я должен объяснить для тех, кто еще не понял разницу между фондовым рынком и валютным рынком (ФОРЕКС): большая разница заключается в том, что в ФОРЕКС не существует, точнее, нам не дают информацию о некоторых моментах, которые действительно происходили в ходе торговли.
preview
Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX

Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX

В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
preview
Анализ всех вариантов движения цены на квантовом компьютере IBM

Анализ всех вариантов движения цены на квантовом компьютере IBM

Используем квантовый компьютер от IBM для открытия всех вариантов движения цены. Звучит как научная фантастика? Добро пожаловать в мир квантовых вычислений для трейдинга!
preview
Одномерный сингулярный спектральный анализ

Одномерный сингулярный спектральный анализ

Статья рассматривает теоретические и практические аспекты метода сингулярного спектрального анализа (SSA), который представляет собой эффективный метод анализа временных рядов, позволяющий представить сложную структуру ряда в виде разложения на простые компоненты, такие как тренд, сезонные (периодические) колебания и шум.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

В третьей части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. Теперь мы займемся совершенствованием советника Simple Hedge с помощью математического анализа и подхода грубой силы (brute force) с целью оптимального использования стратегии. Эта статья углубляется в математическую оптимизацию стратегии, закладывая основу для будущего исследования оптимизации на основе кода в последующих частях.
preview
Фильтр Калмана для возвратных стратегий на рынке Форекс

Фильтр Калмана для возвратных стратегий на рынке Форекс

Фильтр Калмана представляет собой рекурсивный алгоритм, применяемый в алготрейдинге для оценки истинного состояния финансового временного ряда посредством фильтрации шума из движения цен. Он динамически обновляет прогнозы на основе новых рыночных данных, что делает его ценным для таких адаптивных стратегий, как возвратные. В этой статье впервые представлен фильтр Калмана, а также рассмотрены его расчет и реализация. Кроме того, в качестве примера мы применим этот фильтр к классической возвратной форекс-стратегии. Наконец, проведем различные виды статистического анализа, сравнивая фильтр со скользящей средней на различных валютных парах.
preview
Определение перекупленности и перепроданности по теории хаоса

Определение перекупленности и перепроданности по теории хаоса

Определяем перекупленность и перепроданность рынка по теории хаоса: интеграция принципов теории хаоса, фрактальной геометрии и нейронных сетей для прогнозирования финансовых рынков. Исследование демонстрирует применение показателя Ляпунова, как меры рыночной хаотичности, и динамическую адаптацию торговых сигналов. Методология включает алгоритм генерации фрактального шума, гиперболическую тангенциальную активацию и оптимизацию с моментом.
preview
Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Создаем торговую систему с настоящим квантовым симулятором вместо математических аналогий. Система использует 3 виртуальных кубита, квантовые гейты и принципы суперпозиции для анализа рынков. Реализована как торговый советник для MetaTrader 5 на MQL5. Главное достижение — переход от имитации к реальным квантовым принципам обработки финансовой информации.
preview
Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM

Статья исследует революционную архитектуру нейронной сети Mamba/SSM для прогнозирования финансовых временных рядов. Представлена полная реализация на MQL5 современной альтернативы Transformer с линейной сложностью O(N) вместо квадратичной O(N²). Детально рассмотрены селективные State Space Models, hardware-aware оптимизации, patching техники и продвинутые методы обучения AdamW. Включены практические результаты тестирования, показавшие увеличение точности с 62% до 71% при снижении времени обучения с 45 до 8 минут. Представлен готовый торговый советник с автообучением и адаптивным риск-менеджментом для MetaTrader 5.
preview
Алгоритм кометного следа (Comet Tail Algorithm, CTA)

Алгоритм кометного следа (Comet Tail Algorithm, CTA)

В данной статье мы рассмотрим новый авторский алгоритм оптимизации CTA (Comet Tail Algorithm), который черпает вдохновение из уникальных космических объектов - комет и их впечатляющих хвостов, формирующихся при приближении к Солнцу. Данный алгоритм основан на концепции движения комет и их хвостов, и предназначен для поиска оптимальных решений в задачах оптимизации.
preview
Многопоточный торговый робот с машинным обучением: От концепции до реализации

Многопоточный торговый робот с машинным обучением: От концепции до реализации

Статья представляет пошаговую разработку многопоточного торгового робота с машинным обучением на Python и MetaTrader 5. Рассматривается архитектура системы — от сбора данных и создания технических индикаторов до обучения XGBoost-моделей с портфельным риск-менеджментом. Детально описана реализация аугментации данных, кластеризации признаков через Gaussian Mixture Models и координации потоков для параллельной торговли несколькими валютными парами.
preview
Разработка системы репликации - Моделирование рынка (Часть 15): Появление СИМУЛЯТОРА (V) - СЛУЧАЙНОЕ БЛУЖДАНИЕ

Разработка системы репликации - Моделирование рынка (Часть 15): Появление СИМУЛЯТОРА (V) - СЛУЧАЙНОЕ БЛУЖДАНИЕ

В этой статье мы завершим разработку симулятора для нашей системы. Основной целью здесь будет настройка алгоритма, рассмотренного в предыдущей статье. Этот алгоритм направлен на создание движения СЛУЧАЙНОГО БЛУЖДАНИЯ. Поэтому, для понимания сегодняшнего материала, необходимо понять содержание предыдущих статей. Если вы не следили за развитием симулятора, советую посмотреть эту последовательность с самого начала. В противном случае вы можете запутаться в том, что будет здесь объяснено.
preview
Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)

Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)

Эта статья представляет уникальный эксперимент, цель которого - исследовать поведение популяционных алгоритмов оптимизации в контексте их способности эффективно покидать локальные минимумы при низком разнообразии в популяции и достигать глобальных максимумов. Работа в этом направлении позволит глубже понять, какие конкретные алгоритмы могут успешно продолжать поиск из координат, установленных пользователем в качестве отправной точки, и какие факторы влияют на их успешность в этом процессе.
preview
Разработка системы репликации - Моделирование рынка (Часть 17): Тики и еще больше тиков (I)

Разработка системы репликации - Моделирование рынка (Часть 17): Тики и еще больше тиков (I)

Здесь мы увидим, как реализовать что-то действительно интересное, но в то же время очень сложное из-за отдельных моментов, которые многих смущают. И самое худшее, что может случиться - это то, что некоторые трейдеры, считающие себя профессионалами, ничего не знают о важности этих понятий на рынке капитала. Да, хотя основное внимание здесь уделяется программированию, но понимание некоторых вопросов, связанных с торговлей на рынках, имеет первостепенное значение для того, что мы собираемся здесь реализовать.
preview
Разработка системы репликации - Моделирование рынка (Часть 19): Необходимые корректировки

Разработка системы репликации - Моделирование рынка (Часть 19): Необходимые корректировки

Здесь мы подготовим почву для того, чтобы при необходимости добавления новых функций в код это происходило плавно и легко. Текущий код пока не может охватывать или обрабатывать некоторые моменты, которые будут необходимы для значимого прогресса. Нам нужно, чтобы всё было построено так, чтобы усилия по реализации некоторых вещей были минимальными. Если сделаем всё правильно, мы сможем получить действительно универсальную систему, способную очень легко адаптироваться к любой ситуации, которую необходимо охватить.
preview
Теория категорий в MQL5 (Часть 13): События календаря со схемами баз данных

Теория категорий в MQL5 (Часть 13): События календаря со схемами баз данных

В статье рассматривается, как схемы баз данных могут быть включены для классификации в MQL5. Мы кратко рассмотрим, как концепции схемы базы данных могут сочетаться с теорией категорий при идентификации текстовой (строковой) информации, имеющей отношение к торговле. В центре внимания будут находиться события календаря.
preview
Разработка системы репликации - Моделирование рынка (Часть 06): Первые улучшения (I)

Разработка системы репликации - Моделирование рынка (Часть 06): Первые улучшения (I)

В этой статье мы приступим к стабилизации всей системы, иначе мы рискуем не выполнить следующие шаги.
preview
Торговая стратегия SP500 на языке MQL5 для начинающих

Торговая стратегия SP500 на языке MQL5 для начинающих

Узнайте, как использовать язык MQL5 для точного прогнозирования индекса S&P 500, добавляя классический технический анализ для обеспечения стабильности и объединяя алгоритмы с проверенными временем принципы для получения надежной информации о рынке.
preview
Статистический арбитраж посредством возврата к среднему значению в парной торговле: Обыграем рынок с помощью математики

Статистический арбитраж посредством возврата к среднему значению в парной торговле: Обыграем рынок с помощью математики

Эта статья описывает фундаментальные основы статистического арбитража на уровне портфеля. Ее цель — облегчить понимание принципов статистического арбитража читателям, не обладающим глубокими математическими познаниями, и предложить отправную концептуальную конструкцию. Статья включает в себя работающего экспертного советника, некоторые заметки о его тестировании на исторических данных в пределах одного года, а также соответствующие настройки конфигурации тестирования на исторических данных (файл .ini) для воспроизведения эксперимента.
preview
Разработка системы репликации (Часть 41): Начало второй фазы (II)

Разработка системы репликации (Часть 41): Начало второй фазы (II)

Если до этого момента вам всё казалось правильным, это значит, что вы на самом деле не задумываетесь о долгосрочной перспективе. Когда вы начинаете разрабатывать приложения, а со временем вам больше не приходится создавать новые приложения. Остается только добиться того, чтобы они работали вместе. Давайте рассмотрим, как завершить сборку указателя мыши.
preview
Эволюционный торговый алгоритм обучения с подкреплением и вымиранием убыточных особей (ETARE)

Эволюционный торговый алгоритм обучения с подкреплением и вымиранием убыточных особей (ETARE)

Представляем инновационный торговый алгоритм, сочетающий эволюционные алгоритмы с глубоким обучением с подкреплением для торговли на Форекс. Алгоритм использует механизм вымирания неэффективных особей, для оптимизации торговой стратегии.
preview
Решение проблем интеграции ONNX

Решение проблем интеграции ONNX

ONNX — отличный инструмент для интеграции сложного ИИ-кода на разных платформах. Однако при его использовании возникают некоторые сложности, которые необходимо преодолеть, чтобы извлечь из него максимальную пользу. В этой статье мы обсудим распространенные проблемы, с которыми вы можете столкнуться, и способы их устранения.
preview
Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который лишь недавно начал освещаться в MQL5-сообществе. Эта серия статей призвана рассмотреть некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Машинное обучение и Data Science (Часть 29): Как отбирать лучшие форекс-данные для обучения ИИ

Машинное обучение и Data Science (Часть 29): Как отбирать лучшие форекс-данные для обучения ИИ

В этой статье мы подробно рассмотрим важные аспекты при выборе наиболее релевантных и качественных данных с рынка Forex для повышения производительности моделей искусственного интеллекта.
preview
Разработка системы репликации (Часть 50): Все усложняется (II)

Разработка системы репликации (Часть 50): Все усложняется (II)

Мы решим проблему ID графиков, но в то же время начнем обеспечивать пользователю возможность использования личного шаблона, ориентированного на анализ того актива, который он хочет изучить и смоделировать. Представленные здесь материалы носят исключительно дидактический характер, ни в коем случае нельзя рассматривать их как приложение с никакой иной целью, кроме изучения и освоения представленных концепций.
preview
Теория категорий в MQL5 (Часть 12): Порядок

Теория категорий в MQL5 (Часть 12): Порядок

Статья является частью серии о реализации графов средствами теории категорий в MQL5 и посвящена отношению порядка (Order Theory). Мы рассмотрим два основных типа упорядочения и исследуем, как концепции отношения порядка могут поддерживать моноидные множества при принятии торговых решений.
preview
Разработка системы репликации - Моделирование рынка (Часть 16): Новая система классов

Разработка системы репликации - Моделирование рынка (Часть 16): Новая система классов

Нам нужно лучше организовать свою работу. Код растёт, и если этого не сделать сейчас, потом это станет невозможным. Давайте разделять и властвовать. То, что MQL5 позволяет нам использовать классы, поможет нам в этой задаче, но для этого нам нужно иметь некоторые знания о некоторых моментах, связанных с классами. Наверное, новичков больше всего смущает наследование. В этой статье мы рассмотрим практичным и простым способом, как использовать данные механизмы.
preview
Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций

Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций

При параллельной работе многих стратегий может возникнуть желание время от времени закрывать все открытые позиции и начинать работу стратегий заново. Уже написанный код позволяет реализовать такое поведение только вместе с ручными манипуляциями. Попробуем автоматизировать эту часть.
preview
Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)

Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)

Статья представляет алгоритм искусственного электрического поля (AEFA), вдохновленный законом Кулона об электростатической силе. Алгоритм моделирует электрические явления для решения сложных задач оптимизации, используя заряженные частицы и их взаимодействие. AEFA демонстрирует уникальные свойства в контексте других алгоритмов, связанных с законами природы.
Разработка системы репликации - Моделирование рынка (Часть 10): Только реальные данные для репликации
Разработка системы репликации - Моделирование рынка (Часть 10): Только реальные данные для репликации

Разработка системы репликации - Моделирование рынка (Часть 10): Только реальные данные для репликации

Здесь мы рассмотрим, как более надежные данные (торгуемые тики) можно использовать в системе репликации, не беспокоясь о том, скорректированы они или нет.
preview
Оцениваем будущую производительность с помощью доверительных интервалов

Оцениваем будущую производительность с помощью доверительных интервалов

В этой статье мы углубимся в применение методов бутстреппинга (bootstrapping) как средства оценки будущей эффективности автоматизированной стратегии.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены

Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены

Числовые стены (Number Walls) — это вариант регистра сдвига с линейной обратной связью (Linear Shift Back Registers), который предварительно оценивает последовательности на предмет предсказуемости путем проверки на сходимость. Мы посмотрим, как эти идеи могут быть использованы в MQL5.
preview
Алгоритм черной дыры — Black Hole Algorithm (BHA)

Алгоритм черной дыры — Black Hole Algorithm (BHA)

Алгоритм черной дыры (Black Hole Algorithm, BHA) использует принципы гравитации черных дыр для оптимизации решений. В статье мы рассмотрим, как BHA притягивает лучшие решения, избегая локальных экстремумов, и почему этот алгоритм стал мощным инструментом для решения сложных задач. Узнайте, как простые идеи могут привести к впечатляющим результатам в мире оптимизации.
preview
Быстрая интеграция большой языковой модели и MetaTrader 5 (Часть I): Создаем модель

Быстрая интеграция большой языковой модели и MetaTrader 5 (Часть I): Создаем модель

Статья исследует революционную интеграцию больших языковых моделей (LLM) с торговой платформой MetaTrader 5, где AI не просто прогнозирует цены, а принимает автономные торговые решения, анализируя контекст рынка подобно опытному трейдеру. Автор раскрывает фундаментальное отличие LLM от классических моделей машинного обучения вроде CatBoost — способность к метапознанию и саморефлексии, что позволяет системе учиться на собственных ошибках и улучшать стратегию.
preview
Машинное обучение и Data Science (Часть 28): Прогнозирование множества будущих значений для EURUSD

Машинное обучение и Data Science (Часть 28): Прогнозирование множества будущих значений для EURUSD

Многие модели искусственного интеллекта заточены на прогнозирование одного единственного будущего значения. В этой статье мы посмотрим, как использовать модели машинного обучения для прогнозирования множества будущих значений. Такой подход, называемый многошаговым прогнозированием, позволяет предсказывать не только цену закрытия на завтра, но и на послезавтра и так далее. Несомненное преимущество многошагового прогнозирования для трейдеров и аналитиков данных — более широкий спектр информации для возможностей стратегического планирования.