Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)

Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)

В прошлой статье мы познакомились с алгоритмом работы автоэнкодера. Как и любой другой алгоритм, он имеет свои достоинства и недостатки. В оригинальной реализации автоэнкодер выполняет задачу максимально разделить объекты из обучающей выборки. А о том, как бороться с некоторыми его недостатками мы поговорим в этой статье.
preview
Нейросети — это просто (Часть 18): Ассоциативные правила

Нейросети — это просто (Часть 18): Ассоциативные правила

В продолжение данной серии статей предлагаю познакомиться ещё с одним типом задач из методов обучения без учителя — поиск ассоциативных правил. Данный тип задач впервые был применен в ритейле для анализа корзин покупателей. О возможностях использования подобных алгоритмов в рамках трейдинга мы и поговорим в этой статье.
preview
Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)

Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)

Продолжаем изучение алгоритмов обучения с подкреплением. Все ранее рассмотренные нами алгоритмы требовали создания политики вознаграждения таким образом, чтобы агент мог оценить каждое свое действие на каждом переходе из одного состояния системы в другое. Но такой подход довольно искусственный. На практике же между действием и вознаграждением существует некоторый временной лаг. В данной статье я предлагаю Вам познакомиться с алгоритмом обучения модели, способным работать с различными временными задержками от действия до вознаграждения.
preview
Статистический арбитраж с прогнозами

Статистический арбитраж с прогнозами

Мы рассмотрим статистический арбитраж, выполним поиск символов корреляции и коинтеграции с помощью Python, создадим индикатор для коэффициента Пирсона, а также советник для торговли статистическим арбитражем с прогнозами, сделанными с помощью Python и моделей ONNX.
preview
Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Сегодня изучим алгоритм летучих мышей (Bat algorithm - BA), который отличается удивительной сходимостью на гладких функциях.
preview
Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Поиск косяком рыб (FSS) — новый современный алгоритм оптимизации, вдохновленный поведением рыб в стае, большинство из которых, до 80%, плавают организовано в сообществе сородичей. Доказано, что объединения рыб играют важную роль в эффективности поиска пропитания и защиты от хищников.
preview
Нейросети — это просто (Часть 17): Понижение размерности

Нейросети — это просто (Часть 17): Понижение размерности

Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.
preview
Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу создания торгового алгоритма на Python.
preview
Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.
preview
Введение в MQL5 (Часть 1): Руководство по алготрейдингу для начинающих

Введение в MQL5 (Часть 1): Руководство по алготрейдингу для начинающих

Данная статья представляет собой руководство по программированию на MQL5 для начинающих. Она открывает дверь в увлекательный мир алготрейдинга. Здесь вы познакомитесь с основами MQL5, языка программирования торговых стратегий в MetaTrader 5, который и станет проводником в мир автоматической торговли. Эта статья — от понимания основ до первых шагов в программировании — призвана раскрыть потенциал алготрейдинга для всех читателей, даже для тех, у кого совершенно нет опыта программирования. Надеюсь, вам понравится это путешествие в мир трейдинга с MQL5.
preview
Машинное обучение и Data Science (Часть 05): Деревья решений на примере погодных условий для игры в теннис

Машинное обучение и Data Science (Часть 05): Деревья решений на примере погодных условий для игры в теннис

Деревья решений классифицируют данные, имитируя то, каким образом размышляют люди. В этой статье посмотрим, как строить деревья и использовать их для классификации и прогнозирования данных. Основная цель алгоритма деревьев решений состоит в том, чтобы разделить выборку на данные с "примесями" и на "чистые" или близкие к узлам.
preview
Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

В предыдущей статье мы познакомились с реляционными моделями, в архитектуре которых используются механизмы внимания. Одной из особенностей указанных моделей является повышенное использование вычислительных ресурсов. В данной статье будет предложен один их механизмов уменьшения количества вычислительных операций внутри блока Self-Attention. Что позволит увеличить производительность модели в целом.
preview
Нелинейные регрессионные модели на бирже

Нелинейные регрессионные модели на бирже

Нелинейные регрессионные модели на бирже: реально ли прогнозировать финансовые рынки? Попробуем создать моделеь для прогноза цен на евро-доллар, и сделать на ее основе двух роботов - на Python и MQL5.
preview
Популяционные алгоритмы оптимизации: Метод Нелдера-Мида, или метод симплексного поиска (Nelder–Mead method, NM)

Популяционные алгоритмы оптимизации: Метод Нелдера-Мида, или метод симплексного поиска (Nelder–Mead method, NM)

Статья представляет полное исследование метода Нелдера-Мида объясняя, как симплекс — пространство параметров функции — изменяется и перестраивается на каждой итерации для достижения оптимального решения, а также описывает способ улучшения этого метода.
preview
Нейросети — это просто (Часть 30): Генетические алгоритмы

Нейросети — это просто (Часть 30): Генетические алгоритмы

Сегодня я хочу познакомить Вас с немного иным методом обучения. Можно сказать, что он заимствован из теории эволюции Дарвина. Наверное, он менее контролируем в сравнении с рассмотренными ранее методами. Но при этом позволяет обучать и недифференцируемые модели.
preview
Популяционные алгоритмы оптимизации: Дифференциальная эволюция (Differential Evolution, DE)

Популяционные алгоритмы оптимизации: Дифференциальная эволюция (Differential Evolution, DE)

В этой статье поговорим об алгоритме, который демонстрирует самые противоречивые результаты из всех рассмотренных ранее, алгоритм дифференциальной эволюции (DE).
preview
Машинное обучение и Data Science (Часть 11): Наивный байесовский классификатор и теория вероятностей в трейдинге

Машинное обучение и Data Science (Часть 11): Наивный байесовский классификатор и теория вероятностей в трейдинге

Торговлю по вероятностям можно сравнить с ходьбой по канату — она требует точности, баланса и четкого понимания риска. В мире трейдинга вероятность решает все. Именно от нее зависит результат — успех или неудача, прибыль или убыток. Используя возможности вероятности, трейдеры могут принимать более обоснованные решения, эффективнее управлять рисками и достигать своих финансовых целей. Неважно, опытный вы инвестор или начинающий трейдер, понимание вероятности может стать ключом к раскрытию вашего торгового потенциала. В этой статье мы познакомимся с увлекательным миром вероятностного трейдинга и покажем, как вывести игру в торговлю на новый уровень.
preview
Высокочастотная арбитражная торговая система на Python с использованием MetaTrader 5

Высокочастотная арбитражная торговая система на Python с использованием MetaTrader 5

Создаем легальную в глазах брокеров арбитражную систему, которая создает тысячи синтетических цен на рынке Форекс, анализирует их, и успешно торгует в прибыль.
preview
Машинное обучение и Data Science (Часть 12): Можно ли выигрывать на рынке с помощью самообучающихся нейронных сетей?

Машинное обучение и Data Science (Часть 12): Можно ли выигрывать на рынке с помощью самообучающихся нейронных сетей?

Наверняка многим надоели постоянные попытки предсказать фондовый рынок. Хотели бы вы иметь хрустальный шар, который бы помогал принимать более обоснованные инвестиционные решения? Самообучающиеся нейронные сети могут стать таким решением. В этой статье мы посмотрим, могут ли такие мощные алгоритмы помочь «оседлать волну» и перехитрить фондовый рынок. Анализируя огромные объемы данных и выявляя закономерности, самообучающиеся нейронные сети могут делать прогнозы, которые зачастую более точны, чем прогнозы от трейдеров. Давайте посмотрим, можно ли использовать эти передовые технологии, чтобы принимать разумные инвестиционные решения и зарабатывать больше.
preview
Причинно-следственный вывод в задачах классификации временных рядов

Причинно-следственный вывод в задачах классификации временных рядов

В этой статье мы рассмотрим теорию причинно-следственного вывода с применением машинного обучения, а также реализацию авторского подхода на языке Python. Причинно-следственный вывод и причинно-следственное мышление берут свои корни в философии и психологии, это важная часть нашего способа мыслить эту реальность.
preview
Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Сегодня изучим и протестируем мощнейший алгоритм оптимизации - гармонический поиск (HS), который инспирирован процессом поиска идеальной звуковой гармонии. И какой же алгоритм теперь лидер в нашем рейтинге?
preview
Эксперименты с нейросетями (Часть 3): Практическое применение

Эксперименты с нейросетями (Часть 3): Практическое применение

Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
preview
Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены

Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены

Пример использования перцептрона как самодостаточного средства предсказания цены. В статье даются общие понятия, представлен простейший готовый советник и результаты его оптимизации.
preview
Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM

Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM

Статья посвящена разработке модели глубокого обучения GRU ONNX на Python. В практической части мы реализуем эту модель в торговом советнике, а затем сравним работу модели GRU с LSTM (долгой краткосрочной памятью).
preview
Быстрый тестер торговых стратегий на Python с использованием Numba

Быстрый тестер торговых стратегий на Python с использованием Numba

В статье реализован быстрый тестер стратегий для моделей машинного обучения с применением Numba. По скорости он превосходит тестер стратегий на чистом Python в 50 раз. Автор рекомендует использовать эту библиотеку для ускорения математических расчетов и особенно там, где используются циклы.
preview
Матрицы и векторы в MQL5: функции активации

Матрицы и векторы в MQL5: функции активации

В данной статье мы опишем только один из аспектов машинного обучения - функции активации. В искусственных нейронных сетях функция активации нейрона вычисляет значение выходного сигнала на основе значений входного сигнала или набора входных сигналов. Мы покажем, что находится "под капотом".
preview
Эксперименты с нейросетями (Часть 2): Хитрая оптимизация нейросети

Эксперименты с нейросетями (Часть 2): Хитрая оптимизация нейросети

Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
preview
Нейросети — это просто (Часть 25): Практикум Transfer Learning

Нейросети — это просто (Часть 25): Практикум Transfer Learning

В последних двух статьях мы создали инструмент, позволяющий создавать и редактировать модели нейронных сетей. И теперь пришло время оценить потенциальные возможности использования технологии Transfer Learning на практических примерах.
preview
Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция

Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция

Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.
preview
Нейросети — это просто (Часть 73): АвтоБоты прогнозирования ценового движения

Нейросети — это просто (Часть 73): АвтоБоты прогнозирования ценового движения

Мы продолжаем рассмотрение алгоритмов обучения моделей прогнозирования траекторий. И в данной статье я предлагаю вам познакомиться с методом под названием “AutoBots”.
preview
Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу выбора и обучения модели, ее тестирования, внедрения кросс-валидации, поиска по сетке, а также задачу ансамблирования моделей.
preview
Алгоритмическая торговля на основе 3D-паттернов разворота

Алгоритмическая торговля на основе 3D-паттернов разворота

Открываем новый мир автоматической торговли на 3D-барах. Как выглядит торговый робот на многомерных барах цены, и могут ли "желтые" кластеры 3D-баров предсказывать развороты трендов? Как выглядит трейдинг в множестве измерений?
preview
Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

GSA — популяционный алгоритм оптимизации, инспирированный неживой природой. Высокая достоверность моделирования взаимодействия физических тел, благодаря закону гравитации Ньютона в алгоритме, позволяет наблюдать феерический танец планетарных систем и галактических скоплений, который завораживает своим представлением на анимации. Сегодня рассмотрим один из самых интересных и оригинальных алгоритмов оптимизации. Симулятор движения космических объектов прилагается.
preview
Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении

Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении

Продолжаем изучение распределенного Q-обучение. И сегодня мы посмотрим на данный подход с другой стороны. О возможности использования квантильной регрессии в решение вопрос прогнозирования ценовых движений.
preview
Нейросети — это просто (Часть 67): Использование прошлого опыта для решения новых задач

Нейросети — это просто (Часть 67): Использование прошлого опыта для решения новых задач

В данной статье мы продолжим разговор о методах сбора данных в обучающую выборку. Очевидно, что в процессе обучения необходимо постоянное взаимодействие с окружающей средой. Но ситуации бывают разные.
preview
Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I

Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I

Алгоритм имитации отжига (Simulated Annealing) является метаэвристикой, вдохновленной процессом отжига металлов. В нашей статье проведем тщательный анализ алгоритма и покажем, как многие распространенные представления и мифы, вокруг этого наиболее популярного и широко известного метода оптимизации, могут быть ошибочными и неполными. Анонс второй части статьи: "Встречайте собственный авторский алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA)!"
preview
Машинное обучение и Data Science. Нейросети (Часть 02): архитектура нейронных сетей с прямой связью

Машинное обучение и Data Science. Нейросети (Часть 02): архитектура нейронных сетей с прямой связью

В предыдущей статье мы начали изучать нейросети с прямой связью, однако остались неразобранными некоторые моменты. Один из них — проектирование архитектуры. Поэтому в этой статье мы рассмотрим, как спроектировать гибкую нейронную сеть с учетом входных данных, количества скрытых слоев и узлов для каждой сети.
preview
Треугольный арбитраж с прогнозами

Треугольный арбитраж с прогнозами

В статье объясняется, как использовать треугольный арбитраж, а также как применять прогнозы и специализированное программное обеспечение для более разумной торговли валютами, даже если вы новичок на рынке. Готовы торговать как профессионалы?
preview
Python, ONNX и MetaTrader 5: Создаем модель RandomForest с предварительной обработкой данных RobustScaler и PolynomialFeatures

Python, ONNX и MetaTrader 5: Создаем модель RandomForest с предварительной обработкой данных RobustScaler и PolynomialFeatures

В этой статье мы создадим модель случайного леса на языке Python, обучим модель и сохраним ее в виде конвейера ONNX с препроцессингом данных. Модель мы далее используем в терминале MetaTrader 5.
preview
Нейросети — это просто (Часть 57): Стохастический маргинальный актор-критик (SMAC)

Нейросети — это просто (Часть 57): Стохастический маргинальный актор-критик (SMAC)

Предлагаем познакомиться с довольно новым алгоритмом Stochastic Marginal Actor-Critic (SMAC), который позволяет строить политики латентных переменных в рамках максимизации энтропии.