Нейросети — это просто (Часть 78): Детектор объектов на основе Трансформера (DFFT)
В данной статье я предлагаю посмотреть на вопрос построения торговой стратегии с другой стороны. Мы не будем прогнозировать будущее ценовое движение, а попробуем построить торговую систему на основе анализа исторических данных.
Введение в MQL5 (Часть 2): Предопределенные переменные, общие функции и операторы потока управления
В этой статье мы продолжаем знакомиться с языком программирования MQL5. Данная серия статей — не просто учебный материал пособия, это двери в мир программирования. Что делает их особенными? Я постарался в объяснениях сохранять простоту изложения, чтобы сделать сложные концепции доступными для всех. При всей доступности материала, для наилучшего результата вам нужно активно воспроизводить все, о чем мы будем говорить. Только в этом случае вы получите максимальную выгоду от данных статей.
Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)
В данной статье мы проводим исследование алгоритма Boids, в основе которого лежат уникальные примеры стайного поведения животных. Алгоритм Boids, в свою очередь, послужил основой для создания целого класса алгоритмов, объединенных под названием "Роевый интеллект".
Применение теории игр в алгоритмах трейдинга
Создаем адаптивный самообучающийся торговый советник на основе машинного обучения DQN, с многомерным причинно-следственным выводом, который будет успешно торговать одновременно на 7 валютных парах, причем агенты разных пар будут обмениваться друг с другом информацией.
Самообучающийся советник с нейросетью на матрице состояний
Самообучающийся советник с нейросетью на матрице состояний. Совмещаем марковские цепи с многослойной нейросетью MLP, написанной на библиотеке ALGLIB MQL5. Как могут быть совмещены для прогнозирования Форекс марковские цепи и нейросети?
Исследуем регрессионные модели для причинно-следственного вывода и трейдинга
В данной статье проведено исследование на тему возможности применения регрессионных моделей в алгоритмической торговле. Регрессионные модели, в отличие от бинарной классификации, дают возможность создавать более гибкие торговые стратегии за счет количественной оценки прогнозируемых ценовых изменений.
Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях
В этой статье мы заглянем в самую глубь нейронных сетей и поговорим об используемых в них алгоритмах оптимизации. В частности обсудим ключевые методы, которые позволяют раскрыть потенциал нейронных сетей и повысить точность и эффективность моделей.
Представления частотной области временных рядов: Спектральная функция
В этой статье мы рассмотрим методы, связанные с анализом временных рядов в частотной области. Также будет уделено внимание пользе изучения спектральных функций временных рядов при построении прогностических моделей. Кроме того, мы обсудим некоторые многообещающие перспективы анализа временных рядов в частотной области с использованием дискретного преобразования Фурье (ДПФ).
Нейросети — это просто (Часть 45): Обучение навыков исследования состояний
Обучение полезных навыков без явной функции вознаграждения является одной из основных задач в иерархическом обучении с подкреплением. Ранее мы уже познакомились с 2 алгоритмами решения данной задачи. Но вопрос полноты исследования окружающей среды остается открытым. В данной статье демонстрируется иной подход к обучению навыком. Использование которых напрямую зависит от текущего состояния системы.
Как опередить любой рынок (Часть II): Прогнозирование технических индикаторов
Знаете ли вы, что можно добиться большей точности, прогнозируя определенные технические индикаторы, чем саму цену торгуемого символа? В статье рассматривается, как использовать это знание для разработки более эффективных торговых стратегий.
Нейросети — это просто (Часть 41): Иерархические модели
Статья описывает иерархические модели обучения, которые предлагают эффективный подход к решению сложных задач машинного обучения. Иерархические модели состоят из нескольких уровней, каждый из которых отвечает за различные аспекты задачи.
Добавляем пользовательскую LLM в торгового робота (Часть 1): Развертывание оборудования и среды
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти мощные модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)
Алгоритм оптимизации китов (WOA) - это метаэвристический алгоритм, вдохновленный поведением и охотничьими стратегиями горбатых китов. Основная идея WOA заключается в имитации так называемого "пузырькового сетевого" метода кормления, при котором киты создают пузыри вокруг добычи, чтобы затем нападать на нее в спиральном движении.
Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)
Желание получить наиболее точные прогнозы толкает исследователей к усложнению моделей прогнозирования. Что в свою очередь ведет к увеличению затрат на обучение и обслуживание модели. Но всегда ли это оправдано? В данной статье я предлагаю вам познакомиться с алгоритмом, который использует простоту и скорость линейных моделей и демонстрирует результаты на уровне лучших с более сложной архитектурой.
Квантовые вычисления и трейдинг: Новый взгляд на прогнозы цен
В статье рассматривается инновационный подход к прогнозированию движения цен на финансовых рынках с использованием квантовых вычислений. Основное внимание уделяется применению алгоритма квантовой оценки фазы (QPE) для поиска продобразов ценовых паттернов, что позволяет значительно ускорить процесс анализа рыночных данных.
Нейросети — это просто (Часть 52): Исследование с оптимизмом и коррекцией распределения
По мере обучения модели на базе буфера воспроизведения опыта текущая политика Актера все больше отдаляется от сохраненных примеров, что снижает эффективность обучения модели в целом. В данной статье мы рассмотрим алгоритм повышения эффективности использования образцов в алгоритмах обучения с подкреплением.
Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)
В данной статье я предлагаю Вам познакомиться с интересным алгоритмом, который построен на стыке методов обучения с учителем и подкреплением.
Изучаем конформное прогнозирование финансовых временных рядов
В этой статье вы познакомитесь с конформными предсказаниями и библиотекой MAPIE, которая их реализует. Данный подход является одним из самых современных в машинном обучении и позволяет сосредоточиться на контроле рисков для уже существующих разнообразных моделей машинного обучения. Конформные предсказания, сами по себе, не являются способом поиска закономерностей в данных. Они лишь определяют степень уверенности существующих моделей в предсказании конкретных примеров и позволяют фильтровать надежные предсказания.
Разметка данных в анализе временных рядов (Часть 2):Создаем наборы данных с маркерами тренда с помощью Python
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Своп-арбитраж на Форекс: Собираем синтетический портфель и создаем стабильный своп-поток
Хотите узнать, как извлекать выгоду из разницы в процентных ставках? В статье мы посмотрим, как использовать своп-арбитраж на Форексе, чтобы каждую ночь получать стабильный доход, создавая портфель, устойчивый к рыночным колебаниям.
Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)
Статья описывает принципы, методы и возможности применения Электромагнитного алгоритма EM в различных задачах оптимизации. EM-алгоритм является эффективным инструментом оптимизации, способным работать с большими объемами данных и многомерными функциями.
Индикатор силы и направления тренда на 3D-барах
Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.
Своп-арбитраж на Форекс: Собираем синтетический портфель и создаем стабильный своп-поток
Хотите узнать, как извлекать выгоду из разницы в процентных ставках? В статье мы посмотрим, как использовать своп-арбитраж на Форексе, чтобы каждую ночь получать стабильный доход, создавая портфель, устойчивый к рыночным колебаниям.
Ложные регрессии в Python
Ложные регрессии возникают, когда два временных ряда демонстрируют высокую степень корреляции чисто случайно, что приводит к вводящим в заблуждение результатам регрессионного анализа. В таких случаях, даже если переменные кажутся связанными, корреляция является случайной и модель может быть ненадежной.
Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей
На валютном рынке сложно предсказать будущие тренды, не имея представления о прошлом. Очень немногие модели машинного обучения способны делать прогнозы на будущее, учитывая прошлые значения. В этой статье мы посмотрим, как можно использовать классические (не временные ряды) модели искусственного интеллекта, чтобы понять рынок.
Нейросети — это просто (Часть 72): Прогнозирование траекторий в условиях наличия шума
Качество прогнозирование будущих состояний играет важную роль в метода Goal-Conditioned Predictive Coding, с которым мы познакомились в предыдущей статье. В данной статье я хочу познакомить Вас с алгоритмом, способным значительно повысить качество прогнозирования в стохастических средах, к которым можно отнести и финансовые рынки.
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация
В данной статье мы рассмотрим инновационный метод оптимизации, названный BSO (Brain Storm Optimization), который вдохновлен природным явлением - "мозговым штурмом". Мы также обсудим новый подход к решению многомодальных задач оптимизации, который использует метод BSO и позволяет находить несколько оптимальных решений без необходимости заранее определять количество подпопуляций. В статье мы также рассмотрим методы кластеризации K-Means и K-Means++.
Нейросети — это просто (Часть 47): Непрерывное пространство действий
В данной статье мы расширяем спектр задач нашего агента. В процесс обучения будут включены некоторые аспекты мани- и риск-менеджмента, которые являются неотъемлемой частью любой торговой стратегии.
Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)
В данной статье исследуется влияние изменения формы распределений вероятностей на производительность алгоритмов оптимизации. Мы проводим эксперименты на тестовом алгоритме 'Умный головастик' (SC), чтобы оценить эффективность различных распределений вероятностей в контексте оптимизационных задач.
Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer
При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.
Интерпретация моделей: Более глубокое понимание моделей машинного обучения
Машинное обучение — сложная и полезная область для любого человека независимо от опыта. В этой статье мы погрузимся во внутренние механизмы, лежащие в основе создаваемых моделей, исследуем сложный мир функций, прогнозов и эффективных решений и получим четкое понимание интерпретации моделей. Научитесь искусству поиска компромиссов, улучшения прогнозов, ранжирования важности параметров и принятия надежных решений. Статья поможет вам повысить производительность моделей машинного обучения и извлечь больше пользы от применения методологий машинного обучения.
Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов
Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.
Нейросети — это просто (Часть 44): Изучение навыков с учетом динамики
В предыдущей статье мы познакомились с методом DIAYN, который предлагает алгоритм изучения разнообразных навыков. Использование полученных навыкает может быть использовано различных задач. Но подобные навыки могут быть довольно непредсказуемы, что может осложнить из использование. В данной статье мы рассмотрим алгоритм обучения предсказуемых навыков.
Нейросети — это просто (Часть 46): Обучение с подкреплением, направленное на достижение целей (GCRL)
Предлагаю Вам познакомиться с ещё одним направлением в области обучения с подкреплением. Оно называется обучением с подкреплением, направленное на достижение целей (Goal-conditioned reinforcement learning, GCRL). В этом подходе агент обучается достигать различных целей в определенных сценариях.
Фибоначчи на Форекс (Часть I): Проверяем отношения цены и времени
Как рынок ходит по отношениям, основанным на числах Фибоначчи? Эта последовательность, где каждое следующее число равно сумме двух предыдущих (1, 1, 2, 3, 5, 8, 13, 21...), не только описывает рост популяции кроликов. Рассмотрим гипотезу Пифагора о том, что все в мире подчиняется определенным соотношениям чисел...
Интеграция ML-моделей с тестером стратегий (Часть 3): Управление файлами CSV(II)
Данный материал - полное руководство по созданию класса в MQL5 для эффективного управления CSV-файлами. Вы поймете, как реализуются методы открытия, записи, чтения и преобразования данных и как можно использовать их для хранения и доступа к информации. Кроме того, мы обсудим ограничения и важнейшие аспекты использования такого класса. Это ценный материал для тех, кто хочет научиться обрабатывать CSV-файлы в MQL5.
Нейросети в трейдинге: Агент с многоуровневой памятью
Подходы многоуровневой памяти, имитирующие когнитивные процессы человека, позволяют обрабатывать сложные финансовые данные и адаптироваться к новым сигналам, что способствует повышению эффективности инвестиционных решений в условиях динамичных рынков.
Введение в исследование фрактальных рыночных структур с помощью машинного обучения
В данной статье предпринята попытка рассмотрения финансовых временных рядов с точки зрения самоподобных фрактальных структур. Поскольку мы имеем слишком много аналогий, которые подтверждают возможность рассматривать рыночные котировки в качестве самоподобных фракталов, то имеем возможность составить представления о горизонтах прогнозирования таких структур.
Нейросети — это просто (Часть 84): Обратимая нормализация (RevIN)
Мы давно уже усвоили, что большую роль в стабильности обучения модели играет предварительная обработка исходных данных. И для online обработки "сырых" исходных данных мы часто используем слой пакетной нормализации. Но порой возникает необходимость обратной процедуры. Об одном из возможных подходов к решению подобных задач мы говорим в данной статье.
Популяционные алгоритмы оптимизации: Алгоритм эволюции разума (Mind Evolutionary Computation, MEC)
В данной статье рассматривается алгоритм семейства MEC, называемый простым алгоритмом эволюции разума (Simple MEC, SMEC). Алгоритм отличается красотой заложенной идеи и простотой реализации.