Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации

Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации

В первой части данной статьи мы окунемся в мир химических реакций и откроем новый подход к оптимизации! Метод оптимизации химическими реакциями (CRO) использует для достижения эффективных результатов принципы, определяемые законами термодинамики. Мы раскроем секреты декомпозиции, синтеза и других химических процессов, которые стали основой этого инновационного метода.
preview
Самообучающийся советник с нейросетью на матрице состояний

Самообучающийся советник с нейросетью на матрице состояний

Самообучающийся советник с нейросетью на матрице состояний. Совмещаем марковские цепи с многослойной нейросетью MLP, написанной на библиотеке ALGLIB MQL5. Как могут быть совмещены для прогнозирования Форекс марковские цепи и нейросети?
preview
Нейросети — это просто (Часть 87): Сегментация временных рядов

Нейросети — это просто (Часть 87): Сегментация временных рядов

Прогнозирование играет важную роль в анализе временных рядов. В новой статье мы поговорим о преимуществах сегментации временных рядов.
preview
Теория категорий в MQL5 (Часть 2)

Теория категорий в MQL5 (Часть 2)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.
preview
Применение теории игр в алгоритмах трейдинга

Применение теории игр в алгоритмах трейдинга

Создаем адаптивный самообучающийся торговый советник на основе машинного обучения DQN, с многомерным причинно-следственным выводом, который будет успешно торговать одновременно на 7 валютных парах, причем агенты разных пар будут обмениваться друг с другом информацией.
preview
Популяционные алгоритмы оптимизации: Алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA). Часть II

Популяционные алгоритмы оптимизации: Алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA). Часть II

Первая часть статьи была посвящена известному и популярному алгоритму - имитации отжига, были рассмотрены его достоинства и подробно описаны недостатки. Вторая часть статьи посвящена кардинальному преобразованию алгоритма, его перерождению в новый алгоритм оптимизации "имитации изотропного отжига, SIA".
preview
Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей

Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей

На валютном рынке сложно предсказать будущие тренды, не имея представления о прошлом. Очень немногие модели машинного обучения способны делать прогнозы на будущее, учитывая прошлые значения. В этой статье мы посмотрим, как можно использовать классические (не временные ряды) модели искусственного интеллекта, чтобы понять рынок.
preview
Популяционные алгоритмы оптимизации: Тасующий алгоритм прыгающих лягушек (Shuffled Frog-Leaping, SFL)

Популяционные алгоритмы оптимизации: Тасующий алгоритм прыгающих лягушек (Shuffled Frog-Leaping, SFL)

Статья представляет подробное описание алгоритма прыгающих лягушек (SFL) и его возможности в решении задач оптимизации. SFL-алгоритм вдохновлен поведением лягушек в естественной среде и предлагает новый подход к оптимизации функций. SFL-алгоритм является эффективным и гибким инструментом, способным обрабатывать разнообразные типы данных и достигать оптимальных решений.
preview
Нейросети — это просто (Часть 78): Детектор объектов на основе Трансформера (DFFT)

Нейросети — это просто (Часть 78): Детектор объектов на основе Трансформера (DFFT)

В данной статье я предлагаю посмотреть на вопрос построения торговой стратегии с другой стороны. Мы не будем прогнозировать будущее ценовое движение, а попробуем построить торговую систему на основе анализа исторических данных.
preview
Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.
preview
Представления частотной области временных рядов: Спектральная функция

Представления частотной области временных рядов: Спектральная функция

В этой статье мы рассмотрим методы, связанные с анализом временных рядов в частотной области. Также будет уделено внимание пользе изучения спектральных функций временных рядов при построении прогностических моделей. Кроме того, мы обсудим некоторые многообещающие перспективы анализа временных рядов в частотной области с использованием дискретного преобразования Фурье (ДПФ).
preview
Добавляем пользовательскую LLM в торгового робота (Часть 1): Развертывание оборудования и среды

Добавляем пользовательскую LLM в торгового робота (Часть 1): Развертывание оборудования и среды

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти мощные модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Как опередить любой рынок (Часть II): Прогнозирование технических индикаторов

Как опередить любой рынок (Часть II): Прогнозирование технических индикаторов

Знаете ли вы, что можно добиться большей точности, прогнозируя определенные технические индикаторы, чем саму цену торгуемого символа? В статье рассматривается, как использовать это знание для разработки более эффективных торговых стратегий.
preview
Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)

Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)

Алгоритм оптимизации китов (WOA) - это метаэвристический алгоритм, вдохновленный поведением и охотничьими стратегиями горбатых китов. Основная идея WOA заключается в имитации так называемого "пузырькового сетевого" метода кормления, при котором киты создают пузыри вокруг добычи, чтобы затем нападать на нее в спиральном движении.
preview
Нейросети — это просто (Часть 45): Обучение навыков исследования состояний

Нейросети — это просто (Часть 45): Обучение навыков исследования состояний

Обучение полезных навыков без явной функции вознаграждения является одной из основных задач в иерархическом обучении с подкреплением. Ранее мы уже познакомились с 2 алгоритмами решения данной задачи. Но вопрос полноты исследования окружающей среды остается открытым. В данной статье демонстрируется иной подход к обучению навыком. Использование которых напрямую зависит от текущего состояния системы.
preview
Изучаем конформное прогнозирование финансовых временных рядов

Изучаем конформное прогнозирование финансовых временных рядов

В этой статье вы познакомитесь с конформными предсказаниями и библиотекой MAPIE, которая их реализует. Данный подход является одним из самых современных в машинном обучении и позволяет сосредоточиться на контроле рисков для уже существующих разнообразных моделей машинного обучения. Конформные предсказания, сами по себе, не являются способом поиска закономерностей в данных. Они лишь определяют степень уверенности существующих моделей в предсказании конкретных примеров и позволяют фильтровать надежные предсказания.
preview
Разметка данных в анализе временных рядов (Часть 2):Создаем наборы данных с маркерами тренда с помощью Python

Разметка данных в анализе временных рядов (Часть 2):Создаем наборы данных с маркерами тренда с помощью Python

В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
preview
Нейросети — это просто (Часть 41): Иерархические модели

Нейросети — это просто (Часть 41): Иерархические модели

Статья описывает иерархические модели обучения, которые предлагают эффективный подход к решению сложных задач машинного обучения. Иерархические модели состоят из нескольких уровней, каждый из которых отвечает за различные аспекты задачи.
preview
Машинное обучение и Data Science (Часть 27): Сверточные нейросети (CNN) в торговых роботах для MetaTrader 5

Машинное обучение и Data Science (Часть 27): Сверточные нейросети (CNN) в торговых роботах для MetaTrader 5

Сверточные нейронные сети (CNN) используются для обнаружения закономерностей в изображениях и видео. При этом их применение намного шире. В этой статье мы рассмотрим применимость сверточных нейросетей для выявления ценных закономерностей на финансовых рынках и генерации торговых сигналов для торговых роботов в MetaTrader 5. Поговорим о том, как можно использовать этот метод глубокого машинного обучения для принятия обоснованных торговых решений.
preview
Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)

Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)

Желание получить наиболее точные прогнозы толкает исследователей к усложнению моделей прогнозирования. Что в свою очередь ведет к увеличению затрат на обучение и обслуживание модели. Но всегда ли это оправдано? В данной статье я предлагаю вам познакомиться с алгоритмом, который использует простоту и скорость линейных моделей и демонстрирует результаты на уровне лучших с более сложной архитектурой.
preview
Нейросети — это просто (Часть 52): Исследование с оптимизмом и коррекцией распределения

Нейросети — это просто (Часть 52): Исследование с оптимизмом и коррекцией распределения

По мере обучения модели на базе буфера воспроизведения опыта текущая политика Актера все больше отдаляется от сохраненных примеров, что снижает эффективность обучения модели в целом. В данной статье мы рассмотрим алгоритм повышения эффективности использования образцов в алгоритмах обучения с подкреплением.
preview
Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Рекуррентные нейронные сети (RNN) ценятся за способность использовать прошлую информацию для прогнозирования будущих событий. Такие прогностические возможности с успехом применяются в различных областях. В этой статье мы применим модели RNN для прогнозирования трендов на рынке Форекс. Посмотрим, смогут ли они повысить точность прогнозирования в трейдинге.
preview
Ложные регрессии в Python

Ложные регрессии в Python

Ложные регрессии возникают, когда два временных ряда демонстрируют высокую степень корреляции чисто случайно, что приводит к вводящим в заблуждение результатам регрессионного анализа. В таких случаях, даже если переменные кажутся связанными, корреляция является случайной и модель может быть ненадежной.
preview
Индикатор силы и направления тренда на 3D-барах

Индикатор силы и направления тренда на 3D-барах

Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.
preview
Введение в исследование фрактальных рыночных структур с помощью машинного обучения

Введение в исследование фрактальных рыночных структур с помощью машинного обучения

В данной статье предпринята попытка рассмотрения финансовых временных рядов с точки зрения самоподобных фрактальных структур. Поскольку мы имеем слишком много аналогий, которые подтверждают возможность рассматривать рыночные котировки в качестве самоподобных фракталов, то имеем возможность составить представления о горизонтах прогнозирования таких структур.
preview
Нейросети — это просто (Часть 72): Прогнозирование траекторий в условиях наличия шума

Нейросети — это просто (Часть 72): Прогнозирование траекторий в условиях наличия шума

Качество прогнозирование будущих состояний играет важную роль в метода Goal-Conditioned Predictive Coding, с которым мы познакомились в предыдущей статье. В данной статье я хочу познакомить Вас с алгоритмом, способным значительно повысить качество прогнозирования в стохастических средах, к которым можно отнести и финансовые рынки.
preview
Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)

Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)

В данной статье я предлагаю Вам познакомиться с интересным алгоритмом, который построен на стыке методов обучения с учителем и подкреплением.
preview
Фибоначчи на Форекс (Часть I): Проверяем отношения цены и времени

Фибоначчи на Форекс (Часть I): Проверяем отношения цены и времени

Как рынок ходит по отношениям, основанным на числах Фибоначчи? Эта последовательность, где каждое следующее число равно сумме двух предыдущих (1, 1, 2, 3, 5, 8, 13, 21...), не только описывает рост популяции кроликов. Рассмотрим гипотезу Пифагора о том, что все в мире подчиняется определенным соотношениям чисел...
preview
Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Статья описывает принципы, методы и возможности применения Электромагнитного алгоритма EM в различных задачах оптимизации. EM-алгоритм является эффективным инструментом оптимизации, способным работать с большими объемами данных и многомерными функциями.
preview
Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)

Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)

В данной статье исследуется влияние изменения формы распределений вероятностей на производительность алгоритмов оптимизации. Мы проводим эксперименты на тестовом алгоритме 'Умный головастик' (SC), чтобы оценить эффективность различных распределений вероятностей в контексте оптимизационных задач.
preview
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация

Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация

В данной статье мы рассмотрим инновационный метод оптимизации, названный BSO (Brain Storm Optimization), который вдохновлен природным явлением - "мозговым штурмом". Мы также обсудим новый подход к решению многомодальных задач оптимизации, который использует метод BSO и позволяет находить несколько оптимальных решений без необходимости заранее определять количество подпопуляций. В статье мы также рассмотрим методы кластеризации K-Means и K-Means++.
preview
Интерпретация моделей: Более глубокое понимание моделей машинного обучения

Интерпретация моделей: Более глубокое понимание моделей машинного обучения

Машинное обучение — сложная и полезная область для любого человека независимо от опыта. В этой статье мы погрузимся во внутренние механизмы, лежащие в основе создаваемых моделей, исследуем сложный мир функций, прогнозов и эффективных решений и получим четкое понимание интерпретации моделей. Научитесь искусству поиска компромиссов, улучшения прогнозов, ранжирования важности параметров и принятия надежных решений. Статья поможет вам повысить производительность моделей машинного обучения и извлечь больше пользы от применения методологий машинного обучения.
preview
Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.
preview
Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска

Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска

Статья содержит детальное описание алгоритма расчета кросс-курсов, визуализацию матрицы дисбалансов и рекомендации по оптимальной настройке параметров MinDiscrepancy и MaxRisk для эффективной торговли. Система автоматически рассчитывает "справедливую стоимость" каждой валютной пары через кросс-курсы, генерируя сигналы на покупку при отрицательных отклонениях, и на продажу — при положительных.
preview
Нейросети — это просто (Часть 47): Непрерывное пространство действий

Нейросети — это просто (Часть 47): Непрерывное пространство действий

В данной статье мы расширяем спектр задач нашего агента. В процесс обучения будут включены некоторые аспекты мани- и риск-менеджмента, которые являются неотъемлемой частью любой торговой стратегии.
preview
Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.
preview
Интеграция ML-моделей с тестером стратегий (Часть 3): Управление файлами CSV(II)

Интеграция ML-моделей с тестером стратегий (Часть 3): Управление файлами CSV(II)

Данный материал - полное руководство по созданию класса в MQL5 для эффективного управления CSV-файлами. Вы поймете, как реализуются методы открытия, записи, чтения и преобразования данных и как можно использовать их для хранения и доступа к информации. Кроме того, мы обсудим ограничения и важнейшие аспекты использования такого класса. Это ценный материал для тех, кто хочет научиться обрабатывать CSV-файлы в MQL5.
preview
Нейросети — это просто (Часть 44): Изучение навыков с учетом динамики

Нейросети — это просто (Часть 44): Изучение навыков с учетом динамики

В предыдущей статье мы познакомились с методом DIAYN, который предлагает алгоритм изучения разнообразных навыков. Использование полученных навыкает может быть использовано различных задач. Но подобные навыки могут быть довольно непредсказуемы, что может осложнить из использование. В данной статье мы рассмотрим алгоритм обучения предсказуемых навыков.
preview
Объемный нейросетевой анализ как ключ к будущим трендам

Объемный нейросетевой анализ как ключ к будущим трендам

Статья исследует возможность улучшения прогнозирования цен на основе анализа объема торгов, интегрируя принципы технического анализа с архитектурой LSTM нейронных сетей. Особое внимание уделяется выявлению и интерпретации аномальных объемов, использованию кластеризации и созданию признаков на основе объемов и их определения в контексте машинного обучения.