Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.
preview
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.
preview
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)

Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)

Применение анизотропных диффузионных процессов для кодирования исходных данных в гиперболическом латентном пространстве, как это предложено в фреймворке HypDIff, способствует сохранению топологических особенностей текущей рыночной ситуации, и повышает качество её анализа. В предыдущей статье мы начали реализацию предложенных подходов средствами MQL5. И сегодня продолжим начатую работу, доведя ее до логического завершения.
preview
Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий в MQL5 (Часть 7): Мульти-, относительные и индексированные домены

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который лишь недавно начал освещаться в MQL5-сообществе. Эта серия статей призвана рассмотреть некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)

Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)

SAMformer предлагает решение ключевых проблем Transformer в долгосрочном прогнозировании временных рядов, включая сложность обучения и слабое обобщение на малых выборках. Его неглубокая архитектура и оптимизация с учетом резкости обеспечивают избегание плохих локальных минимумов. В данной статье мы продолжим реализацию подходов с использованием MQL5 и оценим их практическую ценность.
preview
Как реализовать автоматическую оптимизацию в советниках MQL5

Как реализовать автоматическую оптимизацию в советниках MQL5

Пошаговое руководство по автоматической оптимизации на MQL5 для советников. Мы рассмотрим надежную логику оптимизации, лучшие практики по выбору параметров, а также как реконструировать стратегии с помощью бэк-тестирования. Кроме того, будут рассмотрены методы более высокого уровня, такие как пошаговая форвард-оптимизация, которые улучшат ваш подход к трейдингу.
preview
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.
preview
Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Квантовая нейросеть на MQL5 (Часть I): Создаем включаемый файл

Статья представляет новый подход к созданию торговых систем на основе квантовых принципов и искусственного интеллекта. Автор описывает разработку уникальной нейронной сети, которая выходит за рамки классического машинного обучения, объединяя квантовую механику с современными архитектурами ИИ.
preview
Торгуем опционы без опционов (Часть 3): Сложные опционные стратегии

Торгуем опционы без опционов (Часть 3): Сложные опционные стратегии

Рассматриваются флэтовые (не направленные) и трендовые (направленные) опционные стратегии и их реализация на MQL5. Модернизируется эксперт, написанный в предыдущей статье. Добавляется отображение опционных уровней. Теперь пора рассмотреть работу и реализовать те стратегии, которые используются на практике опционными трейдерами.
preview
Теория категорий в MQL5 (Часть 12): Порядок

Теория категорий в MQL5 (Часть 12): Порядок

Статья является частью серии о реализации графов средствами теории категорий в MQL5 и посвящена отношению порядка (Order Theory). Мы рассмотрим два основных типа упорядочения и исследуем, как концепции отношения порядка могут поддерживать моноидные множества при принятии торговых решений.
preview
MQL5-советник, интегрированный в Telegram (Часть 5): Отправка команд из Telegram в MQL5 и получение ответов в реальном времени

MQL5-советник, интегрированный в Telegram (Часть 5): Отправка команд из Telegram в MQL5 и получение ответов в реальном времени

В этой статье мы создадим несколько классов для облегчения взаимодействия в реальном времени между MQL5 и Telegram. Мы займемся извлечением команд из Telegram, их декодированием и интерпретацией, а также отправкой соответствующих ответов. Под конец мы протестируем эти взаимодействия и убедимся в их правильной работе в торговой среде.
preview
Индикатор прогнозирования ARIMA на MQL5

Индикатор прогнозирования ARIMA на MQL5

В данной статье мы создаем индикатор прогнозирования ARIMA на MQL5. Рассматривается, как модель ARIMA формирует прогнозы, её применимость к рынку Форекс и фондовому рынку в целом. Также объясняется, что такое авторегрессия AR, каким образом авторегрессионные модели используются для прогнозирования, и как работает механизм авторегрессии.
preview
Разработка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Разработка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.
preview
Создание советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout)

Создание советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout)

В настоящей статье мы создаём советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout). Мы рассмотрим ключевые концепции стратегии, разработаем схему советника и реализуем логику прорыва на MQL5. В конце мы изучаем методы бэк-тестирования и оптимизации советника, чтобы максимально повысить его эффективность.
preview
Система самообучения с подкреплением для алгоритмической торговли на MQL5

Система самообучения с подкреплением для алгоритмической торговли на MQL5

В статье создаётся многоагентная система машинного обучения для алгоритмической торговли на MetaTrader 5 на основе обучения с подкреплением. Система имеет трёхуровневую архитектуру: нейроны памяти хранят опыт, агенты принимают независимые решения, коллективный разум объединяет их через взвешенное голосование. Система непрерывно совершенствуется через Q-обучение, прунинг неэффективных нейронов и эволюционное снижение исследования.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 4): Настройка стиля отображения для каждой трендовой волны

Построение модели для ограничения диапазона сигналов по тренду (Часть 4): Настройка стиля отображения для каждой трендовой волны

В статье показаны возможности мощного языка MQL5 для отрисовки различных стилей индикаторов в MetaTrader 5. Мы также рассмотрим скрипты и их использование в нашей модели.
preview
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.
preview
Нейросети в трейдинге: Изучение локальной структуры данных

Нейросети в трейдинге: Изучение локальной структуры данных

Эффективное выявление и сохранение локальной структуры рыночных данных в условиях шума является важной задачей в трейдинге. Использование механизма Self-Attention показало хорошие результаты в обработке подобных данных, но классический метод не учитывают локальные особенности исходной структуры. В данной статье я предлагаю познакомиться с алгоритмом, способным учитывать эти структурные зависимости.
preview
Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

В этой статье мы рассмторим, как можно использовать обобщенный показатель Херста (Generalized Hurst Exponent) и тест коэффициента дисперсии (Variance Ratio) для анализа поведения ценовых рядов в MQL5.
preview
Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)

Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.
preview
Реализация торговой стратегии Rapid-Fire с использованием индикаторов Parabolic SAR и простой скользящей средней (SMA) на MQL5

Реализация торговой стратегии Rapid-Fire с использованием индикаторов Parabolic SAR и простой скользящей средней (SMA) на MQL5

В настоящей статье мы разрабатываем торговый советник Rapid-Fire на MQL5, используя индикаторы Parabolic SAR и простую скользящую среднюю (SMA) для создания гибкой торговой стратегии. Мы подробно описываем реализацию стратегии, включая использование индикаторов, генерацию сигналов, а также процесс тестирования и оптимизации.
preview
Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Предлагаем познакомиться с методом Иерархический Векторный Transformer (HiVT), который был разработан для быстрого и точного прогнозирования мультимодальных временных рядов.
preview
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

В предыдущей работе мы рассмотрели теоретические аспекты фреймворка PSformer, который включает две основные инновации в архитектуру классического Transformer: механизм совместного использования параметров (Parameter Shared — PS) и внимание к пространственно-временным сегментам (SegAtt). И в данной статье мы продолжаем начатую работу по реализации предложенных подходов средствами MQL5.
preview
Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (STE-FlowNet)

Нейросети в трейдинге: Адаптивное восприятие рыночной динамики (STE-FlowNet)

Фреймворк STE-FlowNet открывает новый взгляд на анализ финансовых данных, реагируя на реальные события рынка, а не на фиксированные таймфреймы. Его архитектура сохраняет локальные и временные зависимости, позволяя отслеживать даже мелкие импульсы в динамике цен.
preview
Прогнозируем Ренко — бары при помощи ИИ CatBoost

Прогнозируем Ренко — бары при помощи ИИ CatBoost

Как использовать Ренко-бары вместе с ИИ? Рассмотрим Ренко-трейдинг на Форекс с точностью прогнозов до 59.27%. Исследуем преимущества Ренко-баров для фильтрации рыночного шума, узнаем, почему объемные показатели важнее ценовых паттернов, и как настроить оптимальный размер блока Ренко для EURUSD. Пошаговое руководство по интеграции CatBoost, Python и MetaTrader 5 для создания собственной системы прогнозирования Ренко Форекс. Идеально для трейдеров, стремящихся выйти за рамки традиционного технического анализа.
preview
Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)

Как построить советник, работающий автоматически (Часть 11): Автоматизация (III)

Автоматизированная система без соответствующей безопасности не будет успешной. Однако безопасность не будет обеспечена без хорошего понимания некоторых вещей. В этой статье мы разберемся с тем, почему достижение максимальной безопасности в автоматизированных системах является такой сложной задачей.
preview
Нейросетевой торговый советник на базе PatchTST

Нейросетевой торговый советник на базе PatchTST

Статья представляет революционную архитектуру PatchTST — специально адаптированный трансформер для анализа финансовых временных рядов, который разбивает рыночные данные на патчи из 16 баров для эффективной обработки. Подробно рассматривается полная реализация торгового робота в MQL5 — от математических основ и структур данных до готового Expert Advisor с системами управления рисками и непрерывного обучения.
preview
Теория категорий в MQL5 (Часть 11): Графы

Теория категорий в MQL5 (Часть 11): Графы

Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассмотрим, как теория графов может быть интегрирована с моноидами и другими структурами данных при разработке стратегии закрытия торговой системы.
preview
Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)

Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)

Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.
preview
Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5

Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5

В статье представлен автоматизированный алгоритм на основе пересечений EMA для MetaTrader 5. Подробная информация обо всех аспектах демонстрации советника на языке MQL5 и его тестирования в MetaTrader 5, от анализа характеристик ценового диапазона до управления рисками.
preview
Автоматизация торговых стратегий на MQL5 (Часть 10): Разработка стратегии Trend Flat Momentum

Автоматизация торговых стратегий на MQL5 (Часть 10): Разработка стратегии Trend Flat Momentum

В настоящей статье мы разрабатываем советник на MQL5 для стратегии Trend Flat Momentum. Мы комбинируем пересечение двух скользящих средних с фильтрами импульса RSI и CCI для генерации торговых сигналов. Также рассказываем о тестировании на истории и потенциальных улучшениях для повышения эффективности в реальных условиях.
preview
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Предлагаем познакомиться с мультиагентной адаптивной структурой оптимизации финансового портфеля (MASAAT), которая объединяет механизмы внимания и анализ временных рядов. MASAAT формирует множество агентов, которые анализируют ценовые ряды и направленные изменения, позволяя выявлять значимые колебания цен активов на различных уровнях детализации.
preview
Теория категорий в MQL5 (Часть 10): Моноидные группы

Теория категорий в MQL5 (Часть 10): Моноидные группы

Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассматриваем группы моноидов как средство, нормализующее множества моноидов и делающее их более сопоставимыми в более широком диапазоне множеств моноидов и типов данных.
preview
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)

Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)

В статье рассматривается адаптация и практическая реализация фреймворка ACEFormer средствами MQL5 в контексте алгоритмической торговли. Показаны ключевые архитектурные решения, особенности обучения и результаты тестирования модели на реальных данных.
preview
Математические модели в сеточных стратегиях

Математические модели в сеточных стратегиях

В этой статье мы рассмотрим применение математики к сеточным стратегиям. Мы разберем основные принципы работы стратегии, её преимущества и недостатки. Вы узнаете, как построить торговую сетку, задавать оптимальные параметры и эффективно управлять рисками.
preview
Альтернативные показатели риска и доходности в MQL5

Альтернативные показатели риска и доходности в MQL5

В этой статье мы представим реализацию нескольких показателей доходности и риска, рассматриваемых как альтернативы коэффициенту Шарпа, и исследуем гипотетические кривые капитала для анализа их характеристик.
preview
Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)

Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)

Одним из направлений повышения эффективности процесса обучения и сходимости моделей является улучшение методов оптимизации. Adam-mini представляет собой адаптивный метод оптимизации, разработанный для улучшения базового алгоритма Adam.
preview
MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках

MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках

В этой статье мы узнаем, как интегрировать команды Telegram с MQL5 для автоматизации добавления индикаторов на торговые графики. Мы рассмотрим процесс анализа пользовательских команд, их выполнение на языке MQL5 и тестирование системы для обеспечения бесперебойной торговли на основе индикаторов.
preview
MQL5-советник, интегрированный в Telegram (Часть 6): Добавление адаптивных встроенных кнопок

MQL5-советник, интегрированный в Telegram (Часть 6): Добавление адаптивных встроенных кнопок

В этой статье мы интегрируем интерактивные встроенные кнопки в MQL5-советник, что позволяет осуществлять управление в режиме реального времени через Telegram. Каждое нажатие кнопки запускает определенные действия и отправляет ответы обратно пользователю. Мы также создадим функции для эффективной обработки Telegram-сообщений и callback-запросов.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASA, который объединяет подходы обучения с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и рисками в турбулентных рыночных условиях. Нами был построен функционал отдельных агентов данного фреймворка, и в этой статье мы продолжим начатую работу, доведя её до логического завершения.