
Нейросети — это просто (Часть 61): Проблема оптимизма в офлайн обучении с подкреплением
В процессе офлайн обучения мы оптимизируем политику Агента по данным обучающей выборки. Полученная стратегия придает Агенту уверенность в его действиях. Однако такой оптимизм не всегда оправдан и может привести к увеличению рисков в процессе эксплуатации модели. Сегодня мы рассмотрим один из методов снижения этих рисков.

Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5
Продолжаем рассмотрение метода кластеризации. В данной статье мы создадим новый класс CKmeans для реализации одного из наиболее распространённых методов кластеризации k-средних. По результатам тестирования модель смогла выделить около 500 паттернов.

Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов
В данной статье хочу познакомить Вас с новым комплексным методом прогнозирования временных рядов, который гармонично сочетает в себе преимущества линейных моделей и трансформеров.

Разработка торгового советника с нуля (Часть 13): Время и торговля (II)
Сегодня мы построим вторую часть системы Times & Trade для анализа рынка. В предыдущей статье "Times & Trade (I)" мы рассмотрели альтернативную систему для организации графика, чтобы у нас был индикатор, позволяющий как можно быстрее интерпретировать сделки, совершенные на рынке.

Нейросети — это просто (Часть 83): Алгоритм пространственно-временного преобразователя постоянного внимания (Conformer)
Предлагаемый Вашему вниманию алгоритм Conformer был разработан для целей прогнозирования погоды, которую по изменчивости и капризности можно сравнить с финансовыми рынками. Conformer является комплексным методом. И сочетает в себе преимущества моделей внимания и обычных дифференциальных уравнений.

Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных
В данной статье обсуждается применение алгоритма Go-Explore на протяжении длительного периода обучения, так как стратегия случайного выбора действий может не привести к прибыльному проходу с увеличением времени обучения.

Несколько индикаторов на графике (Часть 06): Превращаем MetaTrader 5 в систему RAD (II)
В предыдущей статье я показал, как создать Chart Trade с использованием объектов MetaTrader 5 и превратить платформу в систему RAD. Система работает очень хорошо, и наверняка многие задумывались о создании библиотеки — она позволит иметь всё больше и больше функциональности в предлагаемой системе, и можно будет разработать более интуитивно понятный советник с более приятный и простым в использовании интерфейсом.

Нейросети в трейдинге: Практические результаты метода TEMPO
Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.

Разработка торгового советника с нуля (Часть 19): Новая система ордеров (II)
В данной статье мы будем разрабатывать графическую систему ордеров вида «посмотрите, что происходит». Следует сказать, что мы не начнем с нуля, а модифицируем существующую систему, добавив еще больше объектов и событий на график торгуемого нами актива.

Нейросети — это просто (Часть 49): Мягкий Актор-Критик (Soft Actor-Critic)
Мы продолжаем рассмотрение алгоритмов обучения с подкреплением в решении задач непрерывного пространства действий. И в данной статье предлагаю познакомиться с алгоритмом Soft Аctor-Critic (SAC). Основное преимущество SAC заключается в способности находить оптимальные политики, которые не только максимизируют ожидаемую награду, но и имеют максимальную энтропию (разнообразие) действий.

Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning
В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.

Разработка торгового советника с нуля (Часть 9): Концептуальный скачок (II)
Размещение Chart Trade в плавающем окне. В предыдущей статье мы создали базовую систему для использования шаблонов внутри плавающего окна.

Нейросети — это просто (Часть 43): Освоение навыков без функции вознаграждения
Проблема обучения с подкреплением заключается в необходимости определения функции вознаграждения, которая может быть сложной или затруднительной для формализации, и для решения этой проблемы исследуются подходы, основанные на разнообразии действий и исследовании окружения, которые позволяют обучаться навыкам без явной функции вознаграждения.


Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа
В статье создадим список для хранения тиковых данных одного символа и проверим его создание и получение из него требуемых данных в советнике. Такие списки тиковых данных — свой для каждого используемого символа — далее будут составлять собою коллекцию тиковых данных.

Нейросети — это просто (Часть 77): Кросс-ковариационный Трансформер (XCiT)
В своих моделях мы часто используем различные алгоритмы внимание. И, наверное, чаще всего мы используем Трансформеры. Основным их недостатком является требование к ресурсам. В данной статье я хочу предложить Вам познакомиться с алгоритмом, который поможет снизить затраты на вычисления без потери качества.

Оптимизация и тестирование торговых стратегий (Часть 1): Взгляд на "Red Dragon H4", "BOLT", "YinYang", и "Statistics SAR"
Так как я постоянно занимаюсь, разработкой разного рода торговых систем сегодня хочу поделиться с Вами несколькими из них по стратегиям "Red Dragon H4", "BOLT", "YinYang" и "Statistics SAR". Данные стратегии были найдены на просторах интернета.

Нейросети — это просто (Часть 80): Генеративно-состязательная модель Трансформера графов (GTGAN)
В данной статье я предлагаю Вам познакомиться с алгоритмом GTGAN, который был представлен в январе 2024 года для решения сложных задач по созданию архитектурного макета с ограничениями на граф.

Разработка торгового советника с нуля (Часть 11): Система кросс-ордеров
Создание системы кросс-ордеров. Есть один вид активов, который очень усложняет жизнь трейдерам — это активы фьючерсных контрактов. Но почему они усложняют жизнь трейдеру?

Разрабатываем мультивалютный советник (Часть 3): Ревизия архитектуры
Мы уже несколько продвинулись в разработке мультивалютного советника с несколькими параллельно работающими стратегиями. С учетом накопленного опыта проведем ревизию архитектуры нашего решения и попробуем ее улучшить, пока не ушли слишком далеко вперед.

Нейросети в трейдинге: Анализ облака точек (PointNet)
Прямой анализ облака точек позволяет избежать излишнего увеличения объема данных и повышает эффективность моделей в задачах классификации и сегментации. Подобные подходы демонстрируют высокую производительность и устойчивость к возмущениям в исходных данных.

Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики
В этой статье мы поговорим о парадигме объектно-ориентированного программирования и ее применении в коде MQL5. Это вторая статья в серии. В ней мы познакомимся с особенностями объектно-ориентированного программирования и рассмотрим практические примеры. В прошлый раз мы написали советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Сейчас мы преобразуем его процедурный код в объектно-ориентированный.

Разработка торгового советника с нуля (Часть 8): Концептуальный скачок (I)
Как максимально просто реализовать новый функционал? В данной статье мы сделаем шаг назад, а затем два шага вперед.

Нейросети — это просто (Часть 45): Обучение навыков исследования состояний
Обучение полезных навыков без явной функции вознаграждения является одной из основных задач в иерархическом обучении с подкреплением. Ранее мы уже познакомились с 2 алгоритмами решения данной задачи. Но вопрос полноты исследования окружающей среды остается открытым. В данной статье демонстрируется иной подход к обучению навыком. Использование которых напрямую зависит от текущего состояния системы.

Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов
Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.

Нейросети — это просто (Часть 41): Иерархические модели
Статья описывает иерархические модели обучения, которые предлагают эффективный подход к решению сложных задач машинного обучения. Иерархические модели состоят из нескольких уровней, каждый из которых отвечает за различные аспекты задачи.

Как построить советник, работающий автоматически (Часть 07): Виды счетов (II)
Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме. Трейдеру всегда необходимо быть в курсе того, что делает автоматический советник, чтобы, если он «сойдет с рельсов», как можно быстрее удалить его с графика, прекратить таким образом его работу, и взять ситуацию под свой контроль.

Возможности Мастера MQL5, которые вам нужно знать (Часть 6): Преобразование Фурье
Преобразование Фурье, введенное Жозефом Фурье, является средством разложения сложных волновых точек данных на простые составляющие волны. Эта особенность может быть полезной для трейдеров, и именно ее мы и рассмотрим в этой статье.

Как построить советник, работающий автоматически (Часть 13): Автоматизация (V)
Знаете ли вы, что такое блок-схема? Умеете ли вы ее использовать? Думаете ли вы, что блок-схемы - это дело начинающих программистов? Тогда я вам предлагаю ознакомиться с этой статьей и узнать, как работать с блок-схемами.

Нейросети — это просто (Часть 86): U-образный Трансформер
Мы продолжаем рассмотрение алгоритмов прогнозирования временных рядов. И в данной статье я предлагаю Вам познакомиться с методов U-shaped Transformer.

Нейросети — это просто (Часть 52): Исследование с оптимизмом и коррекцией распределения
По мере обучения модели на базе буфера воспроизведения опыта текущая политика Актера все больше отдаляется от сохраненных примеров, что снижает эффективность обучения модели в целом. В данной статье мы рассмотрим алгоритм повышения эффективности использования образцов в алгоритмах обучения с подкреплением.

Нейросети — это просто (Часть 78): Детектор объектов на основе Трансформера (DFFT)
В данной статье я предлагаю посмотреть на вопрос построения торговой стратегии с другой стороны. Мы не будем прогнозировать будущее ценовое движение, а попробуем построить торговую систему на основе анализа исторических данных.

Нейросети в трейдинге: Кусочно-линейное представление временных рядов
Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.

Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)
В данной статье я предлагаю Вам познакомиться с интересным алгоритмом, который построен на стыке методов обучения с учителем и подкреплением.

Создание самооптимизирующихся советников на MQL5
Создавайте советников, которые адаптируются к любому рынку.

Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова
Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.

Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)
Желание получить наиболее точные прогнозы толкает исследователей к усложнению моделей прогнозирования. Что в свою очередь ведет к увеличению затрат на обучение и обслуживание модели. Но всегда ли это оправдано? В данной статье я предлагаю вам познакомиться с алгоритмом, который использует простоту и скорость линейных моделей и демонстрирует результаты на уровне лучших с более сложной архитектурой.

Создаем и оптимизируем торговую систему на основе волатильности с индикатором Чайкина
В этой статье мы поговорим об индикаторе волатильности Чайкина (Chaikin Volatility, CHV). Разберемся, что делает этот индикатор, как и в каких условиях его можно использовать и как создать пользовательский индикатор волатильности. Проанализируем несколько простых стратегий и протестируем их, чтобы понять, какая стратегия лучше.

Нейросети — это просто (Часть 72): Прогнозирование траекторий в условиях наличия шума
Качество прогнозирование будущих состояний играет важную роль в метода Goal-Conditioned Predictive Coding, с которым мы познакомились в предыдущей статье. В данной статье я хочу познакомить Вас с алгоритмом, способным значительно повысить качество прогнозирования в стохастических средах, к которым можно отнести и финансовые рынки.

Нейросети — это просто (Часть 44): Изучение навыков с учетом динамики
В предыдущей статье мы познакомились с методом DIAYN, который предлагает алгоритм изучения разнообразных навыков. Использование полученных навыкает может быть использовано различных задач. Но подобные навыки могут быть довольно непредсказуемы, что может осложнить из использование. В данной статье мы рассмотрим алгоритм обучения предсказуемых навыков.

Нейросети — это просто (Часть 47): Непрерывное пространство действий
В данной статье мы расширяем спектр задач нашего агента. В процесс обучения будут включены некоторые аспекты мани- и риск-менеджмента, которые являются неотъемлемой частью любой торговой стратегии.