
Риск-менеджер для ручной торговли
В данной статье мы подробно раскроем написание класса риск-менеджера для ручной торговли с нуля. Также данный класс может быть использован как базовый класс для наследования трейдерам, которые торгуют алгоритмически.

Разработка торгового советника с нуля (Часть 12): Время и торговля (I)
Сегодня мы создадим Time & Trade с быстрой интерпретацией для чтения потока ордеров. Это первая часть, в которой мы будем строить эту систему. В следующей статье мы дополним систему недостающей информацией, поскольку нам потребуется добавить в код нашего эксперта несколько новых вещей.

Брутфорс-подход к поиску закономерностей (Часть VI): Циклическая оптимизация
В этой статье я покажу первую часть доработок, которые позволили мне не только замкнуть всю цепочку автоматизации для торговли в MetaTrader 4 и 5, но и сделать что-то гораздо интереснее. Отныне данное решение позволяет мне полностью автоматизировать как процесс создания советников, так и процесс оптимизации, а также минимизировать трудозатраты на поиск эффективных торговых конфигураций.

Нейросети — это просто (Часть 16): Практическое использование кластеризации
В предыдущей статье мы построили класс для кластеризации данных. В этой статье я хочу с вами поделиться вариантами возможного использования полученных результатов для решения практических задач трейдинга.

Нейросети — это просто (Часть 58): Трансформер решений (Decision Transformer—DT)
Мы продолжаем рассмотрение методов обучения с подкреплением. И в данной статье я предлагаю вам познакомиться с несколько иным алгоритмом, который рассматривает политику Агента в парадигме построения последовательности действий.

Нейросети — это просто (Часть 53): Декомпозиция вознаграждения
Мы уже не раз говорили о важности правильного подбора функции вознаграждения, которую используем для стимулирования желательного поведения Агента, добавляя вознаграждения или штрафы за отдельные действия. Но остается открытым вопрос о дешифровке наших сигналов Агентом. В данной статье мы поговорим о декомпозиции вознаграждения в части передачи отдельных сигналов обучаемому Агенту.

Риск-менеджер для алгоритмической торговли
Целями данной статьи являются: доказать обязательность применения риск-менеджера, адаптация принципов контролируемого риска при торговле алгоритмически в отдельном классе, чтобы каждый смог самостоятельно убедиться в эффективности подхода нормирования риска при внутридневной торговле и инвестировании на финансовых рынках. В данной статье мы подробно раскроем написание класса риск-менеджера для алгоритмической торговли в продолжение к предыдущей статье по написанию риск-менеджера для ручной торговли.

Готовые шаблоны для подключения индикаторов в экспертах (Часть 2): Индикакторы объёма и Билла Вильямса
В статье рассмотрим стандартные индикаторы из категории Объемов и индикаторов Билла Вильямса. Создадим готовые к применению шаблоны использования индикаторов в советниках — объявление и установка параметров, инициализация, деинициализация индикаторов и получение данных и сигналов из индикаторных буферов в советниках.

Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money
Пошаговое руководство по созданию и реализации автоматизированного торгового алгоритма на основе разрывов справедливой стоимости (Fair Value Gap, FVG) на языке MQL5. Подробное руководство может быть полезно как новичкам, так и опытным трейдерам.

Стратегия Билла Вильямса с индикаторами и прогнозами и без них
Мы рассмотрим одну из известных стратегий Билла Вильямса и попытаемся улучшить ее с помощью индикаторов и прогнозов.

Разработка торгового советника с нуля (Часть 18): Новая система ордеров (I)
Это первая часть новой системы ордеров. С тех пор, как мы начали создавать документацию данного советника в наших статьях, он претерпел различные изменения и улучшения, сохраняя при этом ту же модель системы ордеров на графике.

Разработка торгового советника с нуля (Часть 22): Новая система ордеров (V)
Сегодня мы продолжим разработку новой системы ордеров. Внедрить новую систему совсем непросто: мы часто сталкиваемся с проблемами, которые сильно усложняют процесс. Когда эти проблемы появляются, нам приходится останавливаться и заново анализировать направление, по которому мы движемся.

Тестирование и оптимизация стратегий для бинарных опционов в MetaTrader 5
Проверяем и оптимизируем стратегии для бинарных опционов в MetaTrader 5.

Создаем простой мультивалютный советник с использованием MQL5 (Часть 6): Два индикатора RSI пересекают линии друг друга
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует два индикатора RSI с пересекающимися линиями - быстрый RSI, который пересекается с медленным.

Алгоритмическая торговля на основе 3D-паттернов разворота
Открываем новый мир автоматической торговли на 3D-барах. Как выглядит торговый робот на многомерных барах цены, и могут ли "желтые" кластеры 3D-баров предсказывать развороты трендов? Как выглядит трейдинг в множестве измерений?

Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)
Одной из основных проблем обучения с подкреплением является исследование окружающей среды. Ранее мы уже познакомились с методом исследования на базе внутреннего любопытства. Сегодня я предлагаю посмотреть на ещё один алгоритм — исследование через несогласие.

Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях
В последних статьях мы познакомились с несколькими вариантами использования метода Decision Transformer. Который позволяет анализировать не только текущее состояние, но и траекторию предшествующих состояний и, совершенных в них, действий. В данной статье я предлагаю Вам познакомиться с вариантом использования данного метода в иерархических моделях.

Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию
Продолжаем тему исследования окружающей среды в моделях обучения с подкреплением. И данной статье мы рассмотрим ещё один алгоритм Go-Explore, который позволяет эффективно исследовать окружающую среду на стадии обучения модели.

Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning
В данной серии статей мы уже не один раз упоминали о Transfer Learning. Но дальше упоминаний пока дело не шло. Я предлагаю заполнить этот пробел и посмотреть поближе на Transfer Learning.

Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)
В предыдущих работах мы познакомились с методом Decision Transformer и несколькими производными от него алгоритмами. Мы экспериментировали с различными методами постановки цели. В процессе экспериментов мы работали с различными способами постановки целей, однако изучение моделью уже пройденной траектории всегда оставалось вне нашего внимания. В данной статье я хочу познакомить Вас с методом, который заполняет этот пробел.

Количественный анализ на MQL5: реализуем перспективный алгоритм
Разбираем вопрос, что такое количественный анализ, как его применяют крупные игроки, создадим один из алгоритмов количественного анализа на языке MQL5.

Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления
В статье представлено подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии поддержки и сопротивления. Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа поведения ценового диапазона до управления рисками.

Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)
Продолжаем рассмотрение семейства методов Трансформера решений. Из предыдущих работ мы уже заметили, что обучение трансформера, лежащего в основе архитектуры данных методов, довольно сложная задача и требует большого количества размеченных обучающих данных. В данной статье мы рассмотрим алгоритм использования не размеченных траекторий для предварительного обучения моделей.

Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника
Мы будем создавать простой хеджирующий советник в качестве основы для нашего более продвинутого советника Grid-Hedge, который будет представлять собой смесь классической сетки и классических стратегий хеджирования. К концу этой статьи вы узнаете, как создать простую стратегию хеджирования, а также что говорят люди о прибыльности этой стратегии.

Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении
Обучение моделей в офлайн режиме осуществляется на данных ранее подготовленной обучающей выборки. Это дает нам ряд преимуществ, но при этом информация об окружающей среде сильно сжимается до размеров обучающей выборки. Что, в свою очередь, ограничивает возможности исследования. В данной статье хочу предложить познакомиться с методом, позволяющем наполнить обучающую выборку максимально разнообразными данными.

Нейросети — это просто (Часть 59): Дихотомия контроля (Dichotomy of Control — DoC)
В предыдущей статье мы познакомились с Трансформером решений. Но сложная стохастическая среда валютного рынка не позволила в полной мере раскрыть потенциал представленного метода. Сегодня я хочу представить Вам алгоритм, который направлен на повышение производительности алгоритмов в стохастических средах.

Нейросети — это просто (Часть 69): Ограничение политики поведения на основе плотности офлайн данных (SPOT)
В оффлайн обучении мы используем фиксированный набор данных, что ограничивает покрытие разнообразия окружающей среды. В процессе обучения наш Агент может генерировать действия вне этого набора. При отсутствии обратной связи от окружающей среды корректность оценок таких действий вызывает вопросы. Поддержание политики Агента в пределах обучающей выборки становится важным аспектом для обеспечения надежности обучения. Об этом мы и поговорим в данной статье.

Разработка торгового советника с нуля (Часть 21): Новая система ордеров (IV)
Наконец-то визуальная система заработает... хотя пока не до конца. Здесь мы закончим вносить основные изменения, которых будет не мало, но они все необходимы, и вся работа будет достаточно интересной.

Нейросети — это просто (Часть 48): Методы снижения переоценки значений Q-функции
В предыдущей статье мы познакомились с методом DDPG, который позволяет обучать модели в непрерывном пространстве действий. Однако, как и другие методы Q-обучения, DDPG склонен к переоценки значений Q-функции. Эта проблема часто приводит к обучению агента с неоптимальной стратегией. В данной статье мы рассмотрим некоторые подходы преодоления упомянутой проблемы.

Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX
Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.

Разрабатываем мультивалютный советник (Часть 4): Отложенные виртуальные ордера и сохранение состояния
Приступив к разработке мультивалютного советника мы уже достигли некоторых результатов и успели провести несколько итераций улучшения кода. Однако наш советник не мог работать с отложенными ордерами и возобновлять работу после перезапуска терминала. Давайте добавим эти возможности.

Может ли Heiken Ashi давать хорошие сигналы в сочетании со скользящими средними?
Комбинации стратегий могут повысить эффективность торговли. Мы можем комбинировать индикаторы и паттерны, чтобы получать дополнительные подтверждения. Скользящие средние помогают нам подтвердить тренд и следовать ему. Это самые известный технический индикатор, что объясняется его простотой и доказанной эффективностью анализа.

Нейросети — это просто (Часть 54): Использование случайного энкодера для эффективного исследования (RE3)
Каждый раз, при рассмотрении методов обучения с подкреплением, мы сталкиваемся с вопросом эффективного исследования окружающей среды. Решение данного вопроса часто приводит к усложнению алгоритма и обучению дополнительных моделей. В данной статье мы рассмотрим альтернативный подход к решению данной проблемы.

Работа с таймсериями в библиотеке DoEasy (Часть 54): Классы-наследники абстрактного базового индикатора
В статье рассмотрим создание классов объектов-наследников базового абстрактного индикатора. Такие объекты дадут нам доступ к возможностям создавать индикаторные советники, собирать и получать статистику значений данных разных индикаторов и цен. Также создадим коллекцию объектов-индикаторов, из которой можно будет получать доступ к свойствам и данным каждого созданного в программе индикатора.

Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов
В анализе рыночной ситуации нашими моделями ключевым элементом является свеча. Тем не менее давно известно, что свечные паттерны могут помочь в прогнозировании будущих ценовых движений. И в этой статье мы познакомимся с методом, который позволяет интегрировать оба этих подхода.

Несколько индикаторов на графике (Часть 05): Превращаем MetaTrader 5 в систему RAD (I)
Несмотря на то, что многие люди не умеют программировать, они достаточно креативны и имеют отличные идеи, но отсутствие знаний или понимания программирования мешает им сделать некоторые вещи. Давайте посмотрим вместе, как создать Chart Trade, но используя саму платформу MT5, как будто это IDE.

Нейросети — это просто (Часть 42): Прокрастинация модели, причины и методы решения
Прокрастинация модели в контексте обучения с подкреплением может быть вызвана несколькими причинами, и решение этой проблемы требует принятия соответствующих мер. В статье рассмотрены некоторые из возможных причин прокрастинации модели и методы их преодоления.

Нейросети — это просто (Часть 60): Онлайн Трансформер решений (Online Decision Transformer—ODT)
Последние 2 статьи были посвящены методу Decision Transformer, который моделирует последовательности действий в контексте авторегрессионной модели желаемых вознаграждений. В данной статье мы рассмотрим ещё один алгоритм оптимизации данного метода.

Нейросети — это просто (Часть 70): Улучшение политики с использованием операторов в закрытой форме (CFPI)
В этой статье мы предлагаем познакомиться с алгоритмом, который использует операторы улучшения политики в закрытой форме для оптимизации действий Агента в офлайн режиме.

Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий
Предлагаю Вам познакомиться с довольно эффективным методом многоагентного прогнозирования траекторий, который способен адаптироваться к различным состояниям окружающей среды.