Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Создаем простой мультивалютный советник с использованием MQL5 (Часть 6): Два индикатора RSI пересекают линии друг друга

Создаем простой мультивалютный советник с использованием MQL5 (Часть 6): Два индикатора RSI пересекают линии друг друга

Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует два индикатора RSI с пересекающимися линиями - быстрый RSI, который пересекается с медленным.
preview
Треугольный арбитраж с прогнозами

Треугольный арбитраж с прогнозами

В статье объясняется, как использовать треугольный арбитраж, а также как применять прогнозы и специализированное программное обеспечение для более разумной торговли валютами, даже если вы новичок на рынке. Готовы торговать как профессионалы?
preview
Тестирование и оптимизация стратегий для бинарных опционов в MetaTrader 5

Тестирование и оптимизация стратегий для бинарных опционов в MetaTrader 5

Проверяем и оптимизируем стратегии для бинарных опционов в MetaTrader 5.
preview
Нейросети — это просто (Часть 57): Стохастический маргинальный актор-критик (SMAC)

Нейросети — это просто (Часть 57): Стохастический маргинальный актор-критик (SMAC)

Предлагаем познакомиться с довольно новым алгоритмом Stochastic Marginal Actor-Critic (SMAC), который позволяет строить политики латентных переменных в рамках максимизации энтропии.
preview
Как построить советник, работающий автоматически (Часть 06): Виды счетов (I)

Как построить советник, работающий автоматически (Часть 06): Виды счетов (I)

Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. Пока наш советник может работать в любой ситуации, но он ещё не готов к автоматизации, поэтому нам нужно проработать несколько моментов.
preview
Брутфорс-подход к поиску закономерностей (Часть VI): Циклическая оптимизация

Брутфорс-подход к поиску закономерностей (Часть VI): Циклическая оптимизация

В этой статье я покажу первую часть доработок, которые позволили мне не только замкнуть всю цепочку автоматизации для торговли в MetaTrader 4 и 5, но и сделать что-то гораздо интереснее. Отныне данное решение позволяет мне полностью автоматизировать как процесс создания советников, так и процесс оптимизации, а также минимизировать трудозатраты на поиск эффективных торговых конфигураций.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника

Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника

Мы будем создавать простой хеджирующий советник в качестве основы для нашего более продвинутого советника Grid-Hedge, который будет представлять собой смесь классической сетки и классических стратегий хеджирования. К концу этой статьи вы узнаете, как создать простую стратегию хеджирования, а также что говорят люди о прибыльности этой стратегии.
preview
Как построить советник, работающий автоматически (Часть 05): Ручные триггеры (II)

Как построить советник, работающий автоматически (Часть 05): Ручные триггеры (II)

Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. В конце предыдущей статьи я подумал, что было бы уместно разрешить использование советника вручную хотя бы на время.
preview
Как построить советник, работающий автоматически (Часть 03): Новые функции

Как построить советник, работающий автоматически (Часть 03): Новые функции

Сегодня вы научитесь создавать советник, который просто и безопасно работает в автоматическом режиме. В предыдущей статье мы начали разрабатывать систему ордеров, которой будем пользоваться в автоматическом советнике. Однако мы создали только одну из необходимых функций или процедур.
preview
Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова

Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова

Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.
preview
Нейросети — это просто (Часть 32): Распределенное Q-обучение

Нейросети — это просто (Часть 32): Распределенное Q-обучение

В одной из статей данной серии мы с вами уже познакомились с методом Q-обучения. Данный метод усредняет вознаграждения за каждое действие. В 2017 году были представлены сразу 2 работы, в которых большего успеха добиваются при изучении функции распределения вознаграждения. Давайте рассмотрим возможность использования подобной технологии для решения наших задач.
preview
Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.
preview
Как построить советник, работающий автоматически (Часть 04): Ручные триггеры (I)

Как построить советник, работающий автоматически (Часть 04): Ручные триггеры (I)

Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме.
preview
Эксперименты с нейросетями (Часть 7): Передаем индикаторы

Эксперименты с нейросетями (Часть 7): Передаем индикаторы

Примеры передачи индикаторов в перцептрон. В статье даются общие понятия, представлен простейший готовый советник, результаты его оптимизации и форвард тестирования.
preview
Готовые шаблоны для подключения индикаторов в экспертах (Часть 2): Индикакторы объёма и Билла Вильямса

Готовые шаблоны для подключения индикаторов в экспертах (Часть 2): Индикакторы объёма и Билла Вильямса

В статье рассмотрим стандартные индикаторы из категории Объемов и индикаторов Билла Вильямса. Создадим готовые к применению шаблоны использования индикаторов в советниках — объявление и установка параметров, инициализация, деинициализация индикаторов и получение данных и сигналов из индикаторных буферов в советниках.
preview
Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления

Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления

В статье представлено подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии поддержки и сопротивления. Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа поведения ценового диапазона до управления рисками.
preview
Нейросети — это просто (Часть 16): Практическое использование кластеризации

Нейросети — это просто (Часть 16): Практическое использование кластеризации

В предыдущей статье мы построили класс для кластеризации данных. В этой статье я хочу с вами поделиться вариантами возможного использования полученных результатов для решения практических задач трейдинга.
preview
Нейросети — это просто (Часть 53): Декомпозиция вознаграждения

Нейросети — это просто (Часть 53): Декомпозиция вознаграждения

Мы уже не раз говорили о важности правильного подбора функции вознаграждения, которую используем для стимулирования желательного поведения Агента, добавляя вознаграждения или штрафы за отдельные действия. Но остается открытым вопрос о дешифровке наших сигналов Агентом. В данной статье мы поговорим о декомпозиции вознаграждения в части передачи отдельных сигналов обучаемому Агенту.
preview
Нейросети — это просто (Часть 58): Трансформер решений (Decision Transformer—DT)

Нейросети — это просто (Часть 58): Трансформер решений (Decision Transformer—DT)

Мы продолжаем рассмотрение методов обучения с подкреплением. И в данной статье я предлагаю вам познакомиться с несколько иным алгоритмом, который рассматривает политику Агента в парадигме построения последовательности действий.
preview
Может ли Heiken Ashi давать хорошие сигналы в сочетании со скользящими средними?

Может ли Heiken Ashi давать хорошие сигналы в сочетании со скользящими средними?

Комбинации стратегий могут повысить эффективность торговли. Мы можем комбинировать индикаторы и паттерны, чтобы получать дополнительные подтверждения. Скользящие средние помогают нам подтвердить тренд и следовать ему. Это самые известный технический индикатор, что объясняется его простотой и доказанной эффективностью анализа.
preview
Разработка торгового советника с нуля (Часть 12): Время и торговля (I)

Разработка торгового советника с нуля (Часть 12): Время и торговля (I)

Сегодня мы создадим Time & Trade с быстрой интерпретацией для чтения потока ордеров. Это первая часть, в которой мы будем строить эту систему. В следующей статье мы дополним систему недостающей информацией, поскольку нам потребуется добавить в код нашего эксперта несколько новых вещей.
preview
Количественный анализ на MQL5: реализуем перспективный алгоритм

Количественный анализ на MQL5: реализуем перспективный алгоритм

Разбираем вопрос, что такое количественный анализ, как его применяют крупные игроки, создадим один из алгоритмов количественного анализа на языке MQL5.
preview
Разрабатываем мультивалютный советник (Часть 4): Отложенные виртуальные ордера и сохранение состояния

Разрабатываем мультивалютный советник (Часть 4): Отложенные виртуальные ордера и сохранение состояния

Приступив к разработке мультивалютного советника мы уже достигли некоторых результатов и успели провести несколько итераций улучшения кода. Однако наш советник не мог работать с отложенными ордерами и возобновлять работу после перезапуска терминала. Давайте добавим эти возможности.
preview
Разработка торгового советника с нуля (Часть 18): Новая система ордеров (I)

Разработка торгового советника с нуля (Часть 18): Новая система ордеров (I)

Это первая часть новой системы ордеров. С тех пор, как мы начали создавать документацию данного советника в наших статьях, он претерпел различные изменения и улучшения, сохраняя при этом ту же модель системы ордеров на графике.
preview
Создаем и оптимизируем торговую систему на основе волатильности с индикатором Чайкина

Создаем и оптимизируем торговую систему на основе волатильности с индикатором Чайкина

В этой статье мы поговорим об индикаторе волатильности Чайкина (Chaikin Volatility, CHV). Разберемся, что делает этот индикатор, как и в каких условиях его можно использовать и как создать пользовательский индикатор волатильности. Проанализируем несколько простых стратегий и протестируем их, чтобы понять, какая стратегия лучше.
preview
Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Продолжаем тему исследования окружающей среды в моделях обучения с подкреплением. И данной статье мы рассмотрим ещё один алгоритм Go-Explore, который позволяет эффективно исследовать окружающую среду на стадии обучения модели.
preview
Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

В данной серии статей мы уже не один раз упоминали о Transfer Learning. Но дальше упоминаний пока дело не шло. Я предлагаю заполнить этот пробел и посмотреть поближе на Transfer Learning.
preview
Разработка торгового советника с нуля (Часть 22): Новая система ордеров (V)

Разработка торгового советника с нуля (Часть 22): Новая система ордеров (V)

Сегодня мы продолжим разработку новой системы ордеров. Внедрить новую систему совсем непросто: мы часто сталкиваемся с проблемами, которые сильно усложняют процесс. Когда эти проблемы появляются, нам приходится останавливаться и заново анализировать направление, по которому мы движемся.
preview
Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Одной из основных проблем обучения с подкреплением является исследование окружающей среды. Ранее мы уже познакомились с методом исследования на базе внутреннего любопытства. Сегодня я предлагаю посмотреть на ещё один алгоритм — исследование через несогласие.
preview
Нейросети — это просто (Часть 49): Мягкий Актор-Критик (Soft Actor-Critic)

Нейросети — это просто (Часть 49): Мягкий Актор-Критик (Soft Actor-Critic)

Мы продолжаем рассмотрение алгоритмов обучения с подкреплением в решении задач непрерывного пространства действий. И в данной статье предлагаю познакомиться с алгоритмом Soft Аctor-Critic (SAC). Основное преимущество SAC заключается в способности находить оптимальные политики, которые не только максимизируют ожидаемую награду, но и имеют максимальную энтропию (разнообразие) действий.
preview
Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях

Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях

В последних статьях мы познакомились с несколькими вариантами использования метода Decision Transformer. Который позволяет анализировать не только текущее состояние, но и траекторию предшествующих состояний и, совершенных в них, действий. В данной статье я предлагаю Вам познакомиться с вариантом использования данного метода в иерархических моделях.
preview
Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)

Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)

Продолжаем рассмотрение семейства методов Трансформера решений. Из предыдущих работ мы уже заметили, что обучение трансформера, лежащего в основе архитектуры данных методов, довольно сложная задача и требует большого количества размеченных обучающих данных. В данной статье мы рассмотрим алгоритм использования не размеченных траекторий для предварительного обучения моделей.
preview
Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов

Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов

В данной статье хочу познакомить Вас с новым комплексным методом прогнозирования временных рядов, который гармонично сочетает в себе преимущества линейных моделей и трансформеров.
preview
Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении

Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении

Обучение моделей в офлайн режиме осуществляется на данных ранее подготовленной обучающей выборки. Это дает нам ряд преимуществ, но при этом информация об окружающей среде сильно сжимается до размеров обучающей выборки. Что, в свою очередь, ограничивает возможности исследования. В данной статье хочу предложить познакомиться с методом, позволяющем наполнить обучающую выборку максимально разнообразными данными.
preview
Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)

Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)

В предыдущих работах мы познакомились с методом Decision Transformer и несколькими производными от него алгоритмами. Мы экспериментировали с различными методами постановки цели. В процессе экспериментов мы работали с различными способами постановки целей, однако изучение моделью уже пройденной траектории всегда оставалось вне нашего внимания. В данной статье я хочу познакомить Вас с методом, который заполняет этот пробел.
preview
Оптимизация и тестирование торговых стратегий (Часть 1): Взгляд на "Red Dragon H4", "BOLT", "YinYang", и "Statistics SAR"

Оптимизация и тестирование торговых стратегий (Часть 1): Взгляд на "Red Dragon H4", "BOLT", "YinYang", и "Statistics SAR"

Так как я постоянно занимаюсь, разработкой разного рода торговых систем сегодня хочу поделиться с Вами несколькими из них по стратегиям "Red Dragon H4", "BOLT", "YinYang" и "Statistics SAR". Данные стратегии были найдены на просторах интернета.
preview
Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов

Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов

В анализе рыночной ситуации нашими моделями ключевым элементом является свеча. Тем не менее давно известно, что свечные паттерны могут помочь в прогнозировании будущих ценовых движений. И в этой статье мы познакомимся с методом, который позволяет интегрировать оба этих подхода.
preview
Нейросети — это просто (Часть 59): Дихотомия контроля (Dichotomy of Control — DoC)

Нейросети — это просто (Часть 59): Дихотомия контроля (Dichotomy of Control — DoC)

В предыдущей статье мы познакомились с Трансформером решений. Но сложная стохастическая среда валютного рынка не позволила в полной мере раскрыть потенциал представленного метода. Сегодня я хочу представить Вам алгоритм, который направлен на повышение производительности алгоритмов в стохастических средах.
preview
Нейросети — это просто (Часть 48): Методы снижения переоценки значений Q-функции

Нейросети — это просто (Часть 48): Методы снижения переоценки значений Q-функции

В предыдущей статье мы познакомились с методом DDPG, который позволяет обучать модели в непрерывном пространстве действий. Однако, как и другие методы Q-обучения, DDPG склонен к переоценки значений Q-функции. Эта проблема часто приводит к обучению агента с неоптимальной стратегией. В данной статье мы рассмотрим некоторые подходы преодоления упомянутой проблемы.
preview
Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5

Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5

Продолжаем рассмотрение метода кластеризации. В данной статье мы создадим новый класс CKmeans для реализации одного из наиболее распространённых методов кластеризации k-средних. По результатам тестирования модель смогла выделить около 500 паттернов.