

Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов
Так как в работе программы могут участвовать разные символы, то для каждого символа необходимо создать свой список. Такие списки мы сегодня объединим в коллекцию тиковых данных. По сути это будет обычный список на основе класса динамического массива указателей на экземпляры класса CObject и его наследников Cтандартной библиотеки.

Нейросети — это просто (Часть 17): Понижение размерности
Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.

Нейросети — это просто (Часть 18): Ассоциативные правила
В продолжение данной серии статей предлагаю познакомиться ещё с одним типом задач из методов обучения без учителя — поиск ассоциативных правил. Данный тип задач впервые был применен в ритейле для анализа корзин покупателей. О возможностях использования подобных алгоритмов в рамках трейдинга мы и поговорим в этой статье.

Разбираем примеры торговых стратегий в клиентском терминале
В статье рассмотрим наглядно по блок-схемам логику прилагаемых к терминалу учебных советников, расположенных в папке Experts\Free Robots, торгующих по свечным паттернам.

Опыт разработки торговой стратегии
В этой статье мы сделаем попытку разработать собственную торговую стратегию. Любая торговая стратегия должна быть построена на основе какого-то статистического преимущества. Причем это преимущество должно существовать в течение долгого времени.

Мультибот в MetaTrader: запуск множества роботов с одного графика
В этой статье мы рассмотрим простой шаблон для создания универсального робота в MetaTrader, который можно использовать на нескольких графиках, но прицепив его лишь к одному графику, без необходимости настройки каждого экземпляра робота на каждом отдельном графике.

Нейросети — это просто (Часть 30): Генетические алгоритмы
Сегодня я хочу познакомить Вас с немного иным методом обучения. Можно сказать, что он заимствован из теории эволюции Дарвина. Наверное, он менее контролируем в сравнении с рассмотренными ранее методами. Но при этом позволяет обучать и недифференцируемые модели.

Трейлинг-стоп в трейдинге
В этой статье мы рассмотрим использование трейлинг-стопа в торговле — насколько он полезен и эффективен, и как его можно использовать. Эффективность трейлинг-стопа во многом зависит от волатильности цены и подбора уровня стоп-лосса. Для установки стоп-лосса могут использоваться самые разные подходы.

Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)
В предыдущей статье мы познакомились с реляционными моделями, в архитектуре которых используются механизмы внимания. Одной из особенностей указанных моделей является повышенное использование вычислительных ресурсов. В данной статье будет предложен один их механизмов уменьшения количества вычислительных операций внутри блока Self-Attention. Что позволит увеличить производительность модели в целом.

Как построить советник, работающий автоматически (Часть 08): OnTradeTransaction
В этой статье я покажу вам, как использовать систему обработки событий, для быстрой и лучшей обработки вопросов, связанных с системой ордеров, чтобы советник работал быстрее. Таким образом, ему не придется постоянно искать информацию.

Магия временных торговых интервалов с инструментом Frames Analyzer
Что такое Frames Analyzer? Это подключаемый модуль к любому торговому эксперту для анализа фреймов оптимизации во время оптимизации параметров в тестере стратегий, а также вне тестера посредством чтения MQD-файла или базы данных, которая создаётся сразу после оптимизации параметров. Вы сможете делиться этими результатами оптимизации с другими пользователями, у которых есть инструмент Frames Analyzer, чтобы обсудить полученные результаты оптимизации вместе.

Эксперименты с нейросетями (Часть 3): Практическое применение
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.


Прочие классы в библиотеке DoEasy (Часть 67): Класс объекта-чарта
В статье создадим класс объекта-чарта (одного графика торгового инструмента) и доработаем класс-коллекцию объектов mql5-сигнал так, чтобы каждый объект-сигнал, хранящийся в коллекции при обновлении списка также обновлял все свои параметры.

Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены
Пример использования перцептрона как самодостаточного средства предсказания цены. В статье даются общие понятия, представлен простейший готовый советник и результаты его оптимизации.

Разработка торгового советника с нуля (Часть 7): Добавляем Volume At Price (I)
Это один из самых мощных индикаторов из существующих. Те, кто торгует и старается иметь определенную степень уверенности, не могут не иметь этот индикатор на своем графике. Хотя чаще всего его используют те, кто торгует, наблюдая за лентой сделок («tape reading»). Также этот индикатор могут использовать и те, кто использует только Price Action.

Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора
В статье разработаем объект, который будет содержать в себе все данные одного буфера одного индикатора. Такие объекты потребуются для хранения серийных данных буферов индикаторов, и с помощью которых возможно будет сортировать и сравнивать данные буферов любых индикаторов и других схожих данных между собой.

Эксперименты с нейросетями (Часть 2): Хитрая оптимизация нейросети
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.


Работа с ценами в библиотеке DoEasy (Часть 63): Стакан цен, класс абстрактной заявки стакана цен
В статье начнём разработку функционала для работы со стаканом цен. Создадим класс объекта абстрактной заявки стакана цен и его наследников.

Нейросети — это просто (Часть 73): АвтоБоты прогнозирования ценового движения
Мы продолжаем рассмотрение алгоритмов обучения моделей прогнозирования траекторий. И в данной статье я предлагаю вам познакомиться с методом под названием “AutoBots”.

Как сделать любой тип Trailing Stop и подключить к советнику
В статье рассмотрим классы для удобного создания различных трейлингов. Научимся подключать трейлинг-стоп к любому советнику.

Индикатор CCI. Модернизация и новые возможности
В этой статье мы рассмотрим возможность модернизации индикатора CCI. Кроме того, будет представлен пример модификации этого индикатора.

Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция
Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.

Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении
Продолжаем изучение распределенного Q-обучение. И сегодня мы посмотрим на данный подход с другой стороны. О возможности использования квантильной регрессии в решение вопрос прогнозирования ценовых движений.

Вспоминаем старую трендовую стратегию: два стохастических осциллятора, MA и Фибоначчи
Старые торговые стратегии. В этой статье представлена стратегия отслеживания тренда. Стратегия исключительно техническая и использует несколько индикаторов и инструментов для подачи сигналов и определения целевых уровней. Компоненты стратегии включают в себя: 14-периодный стохастический осциллятор, пятипериодный стохастический осциллятор, скользящую среднюю с периодом 200 и проекцию Фибоначчи (для установки целевых уровней).

Готовые шаблоны для подключения индикаторов в экспертах (Часть 3): Трендовые индикаторы
В этой справочной статье рассмотрим стандартные индикаторы из категории "Трендовые индикаторы". Создадим готовые к применению шаблоны использования этих индикаторов в советниках — объявление и установка параметров, инициализация и деинициализация индикаторов и получение данных и сигналов из индикаторных буферов в советниках.

Как построить советник, работающий автоматически (Часть 06): Виды счетов (I)
Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. Пока наш советник может работать в любой ситуации, но он ещё не готов к автоматизации, поэтому нам нужно проработать несколько моментов.

Нейросети — это просто (Часть 57): Стохастический маргинальный актор-критик (SMAC)
Предлагаем познакомиться с довольно новым алгоритмом Stochastic Marginal Actor-Critic (SMAC), который позволяет строить политики латентных переменных в рамках максимизации энтропии.

Как построить советник, работающий автоматически (Часть 05): Ручные триггеры (II)
Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. В конце предыдущей статьи я подумал, что было бы уместно разрешить использование советника вручную хотя бы на время.

Создаем простой мультивалютный советник с использованием MQL5 (Часть 1): Сигналы на основе ADX в сочетании с Parabolic SAR
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами и т. д.) более чем одной парой символов с одного графика.

Изучение MQL5 — от новичка до профи (Часть VI): Основы написания советников
Статья продолжает цикл для начинающих. Здесь будут рассмотрены основные принципы построения советников. Мы создадим два советника: первый будет торговать без индикаторов, отложенными ордерами, второй — на основе стандартного индикатора MA, торгующий с помощью сделок по текущей цене. Здесь я предполагаю, что вы уже не совсем новичок и владеете материалом предыдущих статей относительно свободно.

Как построить советник, работающий автоматически (Часть 04): Ручные триггеры (I)
Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме.

Нейросети — это просто (Часть 67): Использование прошлого опыта для решения новых задач
В данной статье мы продолжим разговор о методах сбора данных в обучающую выборку. Очевидно, что в процессе обучения необходимо постоянное взаимодействие с окружающей средой. Но ситуации бывают разные.

Как построить советник, работающий автоматически (Часть 03): Новые функции
Сегодня вы научитесь создавать советник, который просто и безопасно работает в автоматическом режиме. В предыдущей статье мы начали разрабатывать систему ордеров, которой будем пользоваться в автоматическом советнике. Однако мы создали только одну из необходимых функций или процедур.

Треугольный арбитраж с прогнозами
В статье объясняется, как использовать треугольный арбитраж, а также как применять прогнозы и специализированное программное обеспечение для более разумной торговли валютами, даже если вы новичок на рынке. Готовы торговать как профессионалы?

Изучение MQL5 — от новичка до профи (Часть II): Базовые типы данных и использование переменных
Продолжение серии для начинающих. Здесь мы рассмотрим, как создавать константы и переменные, записывать дату, цвета и другие полезные данные. Научимся создавать перечисления вроде дней недели или стилей линий (сплошная, пунктирная и т.д.). Переменные и выражения - это база программирования. Они обязательно есть в 99% программ, поэтому понимать их критически важно. И поэтому, если вы - новичок в программировании - прошу. Уровень знания программирования: очень базовый - в пределах моей предыдущей статьи (ссылка - в начале).

Нейросети — это просто (Часть 32): Распределенное Q-обучение
В одной из статей данной серии мы с вами уже познакомились с методом Q-обучения. Данный метод усредняет вознаграждения за каждое действие. В 2017 году были представлены сразу 2 работы, в которых большего успеха добиваются при изучении функции распределения вознаграждения. Давайте рассмотрим возможность использования подобной технологии для решения наших задач.

Библиотека численного анализа ALGLIB в MQL5
В этой статье мы кратко рассмотрим библиотеку численного анализа ALGLIB 3.19, ее приложения и новые алгоритмы, позволяющие повысить эффективность анализа финансовых данных.

Эксперименты с нейросетями (Часть 7): Передаем индикаторы
Примеры передачи индикаторов в перцептрон. В статье даются общие понятия, представлен простейший готовый советник, результаты его оптимизации и форвард тестирования.

Мультибот в MetaTrader (Часть II): улучшенный динамический шаблон
Развивая тему предыдущей статьи про мультибота, я решил создать более гибкий и функциональный шаблон, который обладает большими возможностями и может эффективно применяться как во фрилансе, так и использоваться в виде базы для разработки мультивалютных и мультипериодных советников с возможностью интеграции с внешними решениями.

Разрабатываем мультивалютный советник (Часть 2): Переход к виртуальным позициям торговых стратегий
Продолжим разработку мультивалютного советника с несколькими параллельно работающими стратегиями. Попробуем перенести всю работу, связанную с открытием рыночных позиций с уровня стратегий на уровень эксперта, управляющего стратегиями. Сами стратегии будут торговать только виртуально, не открывая рыночных позиций.