Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (Основные компоненты)

Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (Основные компоненты)

В статье рассматривается архитектура фреймворка EVA-Flow, ориентированного на обработку пространственно-временных данных и прогнозирование динамики потоков. Основное внимание уделено SMR-модулю, обеспечивающему устойчивое формирование скрытых состояний, и механизму адаптивной инициализации начального состояния через обучаемые кандидаты.
preview
Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (EVA-Flow)

Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (EVA-Flow)

В статье знакомимся с фреймворком EVA-Flow для низколатентной и высокочастотной оценки оптического потока на основе событийных данных. Модель сочетает адаптивное представление потока через Unified Voxel Grid с пространственно-временной рекуррентной архитектурой SMR, обеспечивая стабильное и точное прогнозирование движения в режиме реального времени.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Окончание)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Окончание)

В статье представлена адаптация фреймворка P-SSE для задач анализа финансовых рынков. Реализованные решения обеспечивают последовательную обработку локальных событий, аккумулируя их в согласованное представление рыночной динамики. Подход позволяет прогнозировать изменения рынка на заданный горизонт планирования, сохраняя высокую чувствительность к микроимпульсам и минимизируя вычислительные затраты.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (модуль E-TROF)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (модуль E-TROF)

В статье показан механизм превращения потока тиков или баров в устойчивое контекстное представление рынка, пригодное для онлайн-торговли без лишних вычислений. Инкрементальная обработка, стековое накопление состояния и расширенное пространство признаков позволяют выявлять направленные движения и локальные корреляции там, где классические методы видят лишь шум.
preview
Создание самооптимизирующихся советников на MQL5 (Часть 6): Самоадаптирующиеся торговые правила (II)

Создание самооптимизирующихся советников на MQL5 (Часть 6): Самоадаптирующиеся торговые правила (II)

В статье рассматривается оптимизация уровней и периодов RSI для получения более эффективных торговых сигналов. Будут представлены методы оценки оптимальных значений RSI и автоматизации выбора периода с использованием поиска по сетке и статистических моделей. Наконец, мы реализуем решение на языке MQL5, используя Python для анализа. Наш подход прагматичен, прост и направлен на то, чтобы с легкостью решать потенциально сложные проблемы.
preview
Знакомство с языком MQL5 (Часть 27): Освоение API и функции WebRequest в языке MQL5

Знакомство с языком MQL5 (Часть 27): Освоение API и функции WebRequest в языке MQL5

В этой статье рассматривается, как использовать функцию WebRequest() и API в языке MQL5 для взаимодействия с внешними платформами. Вы узнаете, как создать Telegram-бота, получать идентификаторы чатов и групп, а также отправлять, редактировать и удалять сообщения непосредственно из MetaTrader 5, и тем самым заложите прочный фундамент для интеграции API в ваши будущие проекты на языке MQL5.
preview
От новичка до эксперта: Алгоритмическая дисциплина трейдера — советник Risk Enforcer вместо эмоций

От новичка до эксперта: Алгоритмическая дисциплина трейдера — советник Risk Enforcer вместо эмоций

Для многих трейдеров разрыв между знанием правил управления рисками и последовательным их соблюдением приводит к гибели счетов. Эмоциональное подавление, торговля с целью отыграться и простая оплошность могут разрушить даже самую лучшую стратегию. Сегодня мы превратим платформу MetaTrader 5 в надежного исполнителя ваших торговых правил, разработав советник по управлению рисками под названием Risk Enforcement Expert Advisor. Присоединяйтесь к этой дискуссии, чтобы узнать больше.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Основные компоненты)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Основные компоненты)

В данной статье представлен практический подход к адаптации современного фреймворка для анализа финансовых потоков средствами MQL5. Рассмотрены ключевые компоненты модели — Depth-Wise свёртки с остаточными связями, конусные Super Kernel Block и модуль глобальной агрегации движения (GMA).
preview
Знакомство с языком MQL5 (Часть 26): Советник по зонам поддержки/сопротивления — выявление, проверка пробоя и вход

Знакомство с языком MQL5 (Часть 26): Советник по зонам поддержки/сопротивления — выявление, проверка пробоя и вход

В этой статье вы научитесь созданию советника на языке MQL5, который автоматически определяет зоны поддержки и сопротивления и исполняет сделки на их основе. Вы узнаете, как запрограммировать своего советника так, чтобы он выявлял эти ключевые рыночные уровни, осуществлял мониторинг отскоков цены и принимал торговые решения без ручного вмешательства.
preview
От новичка до эксперта: Торговля по RSI с учетом структуры рынка

От новичка до эксперта: Торговля по RSI с учетом структуры рынка

В настоящей статье рассмотрим практические приемы торговли осциллятором Индекс относительной силы (RSI) с рыночной структурой. Наше внимание будет сосредоточено на паттернах изменения цен в канале, на том, как они обычно торгуются, и как можно использовать MQL5 для улучшения этого процесса. В итоге вы получите основанную на правилах автоматизированную систему канальной торговли и предназначенную для более точного и стабильного выявления возможностей продолжения тренда.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Энкодер)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Энкодер)

В статье представлен практический подход к реализации модуля P-SSE для анализа потоков рыночных данных в реальном времени. Продуманное использование стека исторических состояний позволяет каждому срезу рынка обрабатываться лишь один раз, исключая дублирование вычислений и ускоряя онлайн-анализ. Представленные решения обеспечивают высокую точность, устойчивость модели и эффективность обработки, делая фреймворк мощным инструментом для анализа микроимпульсов на финансовых рынках.
preview
Знакомство с языком MQL5 (Часть 25): Создание советника для торговли по графическим объектам (II)

Знакомство с языком MQL5 (Часть 25): Создание советника для торговли по графическим объектам (II)

В этой статье объясняется, как создать советник, который взаимодействует с графическими объектами, особенно с трендовыми линиями, чтобы выявлять потенциальные пробои и развороты и торговать по ним. Вы узнаете, как советник подтверждает действительность сигналов, управляет частотой торговли и поддерживает согласованность с выбранными пользователем стратегиями.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики

В статье представлен фреймворк для анализа финансовых рынков на основе моделей пространства состояний с возмущениями. Подход сочетает аккумулирование глобальной динамики и учёт локальных микроизменений, обеспечивая высокую точность прогнозов и устойчивость к шуму данных. Архитектура P-SSE с двунаправленной корреляцией и рекуррентными блоками позволяет эффективно извлекать контекст из последовательностей событий. Предложенный метод открывает новые возможности для адаптивного анализа рыночной динамики.
preview
От новичка до эксперта: Развиваем географическую осознанность рынка с помощью визуализации на MQL5

От новичка до эксперта: Развиваем географическую осознанность рынка с помощью визуализации на MQL5

Торговать без осознания сессии — все равно что ориентироваться без компаса: вы движетесь, но без определенной цели. Сегодня мы совершаем революцию в восприятии трейдерами рыночного тайминга, превращая обычные графики в динамичные географические отображения. Используя мощные возможности визуализации MQL5, мы создадим живую карту мира, которая подсвечивает активные торговые сессии в режиме реального времени, превращая абстрактные рыночные часы в интуитивно понятную визуальную информацию. Это путешествие отточит вашу психологию трейдинга и познакомит вас с методами программирования профессионального уровня, позволяющими преодолеть разрыв между сложной структурой рынка и практической, действенной информацией.
preview
Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Окончание)

Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Окончание)

В статье представлен практический опыт внедрения фреймворка STFlow в торговую систему. Показано, как параллельная обработка ICE-признаков и потока событий, сочетание motion-энкодера и адаптивной фьюжн-агрегации позволяют модели самостоятельно анализировать рынок и принимать решения в реальном времени. Результаты тестирования на исторических данных демонстрируют положительное математическое ожидание и способность к адаптации в меняющихся рыночных условиях.
preview
Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Энкодеры)

Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Энкодеры)

Статья раскрывает архитектуру объекта верхнего уровня STFlow и работу энкодера Mix-Fusion, отвечающего за согласованное смешивание контекста разных модальностей. Показано, как обеспечивается устойчивость обработки при высокой чувствительности к микроимпульсам рынка и сохранении скорости работы модели.
preview
Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (III): Модуль коммуникации

Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (III): Модуль коммуникации

В этой статье мы представим обновленную панель связи и продолжим нашу серию статей о создании новой панели администратора с использованием принципов модуляризации. Мы шаг за шагом разработаем класс CommunicationsDialog, подробно объяснив, как наследовать его от класса Dialog. Кроме того, в процессе разработки мы будем использовать массивы и класс ListView. Присоединяйтесь к обсуждению в комментариях!
preview
Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Основные модули)

Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (Основные модули)

В этой статье продолжается практическая реализация фреймворка STFlow. Показано, как идеи пространственно-временной агрегации и кросс-модальной обработки превращаются в рабочие спайковые модули для анализа рынка.
preview
Функции Уолша в современном трейдинге

Функции Уолша в современном трейдинге

Эта статья рассматривает применение функций Уолша в трейдинге. Мы познакомимся с основными принципами использования этих функций для анализа финансовых рынков, прогнозирования цен и принятия торговых решений. Также мы обсудим преимущества и недостатки этих функций, и перспективы их применения в трейдинге и техническом анализе.
preview
Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (STFlow)

Нейросети в трейдинге: Пространственно-управляемая агрегация рыночных событий (STFlow)

Статья знакомит с фреймворком STFlow, который способен формировать устойчивое совместное представление текущего состояния рынка и динамики последних событий, обеспечивая высокую чувствительность к микроимпульсам при сохранении стабильности обработки. Реализован базовый модуль ICE, который аккумулирует потоки цены и событий, создавая надёжный фундамент для дальнейшей агрегации и анализа.
preview
Знакомство с языком MQL5 (Часть 23): Автоматизация торговли на пробое диапазона открытия рынка

Знакомство с языком MQL5 (Часть 23): Автоматизация торговли на пробое диапазона открытия рынка

В этой статье рассматривается, как создать советник для торговли по стратегии пробоя диапазона открытия (Opening Range Breakout, ORB) на языке MQL5. В статье объясняется, как советник идентифицирует пробои из диапазона открытия рынка и открывает соответствующие сделки. Вы также научитесь контролировать количество открытых позиций и устанавливать конкретное время прекращения для автоматической остановки торговли.
preview
Нейросети в трейдинге: Разностное моделирование рыночной микроструктуры (Окончание)

Нейросети в трейдинге: Разностное моделирование рыночной микроструктуры (Окончание)

В статье подробно разбирается практическая реализация идей фреймворка EDCFlow средствами MQL5 и их проверка на реальных исторических данных. Показано, как нейросетевая модель формирует внутреннее представление рыночной среды, работает с корреляциями признаков и принимает торговые решения без ручных правил. Результаты тестирования раскрывают не только потенциал подхода, но и его слабые места, честно обозначая границы применимости и направления дальнейшего развития.
preview
Нейросети в трейдинге: Разностное моделирование рыночной микроструктуры (Блок разностей)

Нейросети в трейдинге: Разностное моделирование рыночной микроструктуры (Блок разностей)

В статье представлена практическая реализация подходов фреймворка EDCFlow с акцентом на модуль Multi-Scale Difference. Показано, как последовательное сжатие признаков, вычисление разностей на нескольких масштабах и адаптивное мультимасштабное внимание позволяют формировать структурированное и информативное представление потоковых данных.
preview
Нейросети в трейдинге: Разностное моделирование рыночной микроструктуры (EDCFlow)

Нейросети в трейдинге: Разностное моделирование рыночной микроструктуры (EDCFlow)

В статье знакомимся с фреймворком EDCFlow, который предлагает новый подход к анализу рыночной микроструктуры. Он сочетает корреляцию состояний с картой разностей, позволяя выявлять тонкие динамические изменения рынка. Архитектура модели эффективно агрегирует многомасштабные признаки при минимальных вычислительных затратах, что делает её пригодной для анализа в реальном времени.
preview
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (Окончание)

Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (Окончание)

В статье представлена адаптация фреймворка EEMFlow для построения высокоэффективных торговых моделей средствами MQL5. Рассматриваются алгоритмы оценки MeshFlow с расширенной корреляцией признаков, позволяющие точно анализировать динамику рынка и прогнозировать ценовые потоки. Тестирование подтвердило положительное математическое ожидание, умеренные просадки и высокую эффективность принятия решений.
preview
Знакомство с языком MQL5 (Часть 21): Автоматическое обнаружение паттернов Гартли

Знакомство с языком MQL5 (Часть 21): Автоматическое обнаружение паттернов Гартли

Узнайте, как обнаружить и отобразить гармонический паттерн Гартли в MetaTrader 5 с использованием языка MQL5. В этой статье объясняется каждый шаг данного процесса: от выявления точек свинга до применения коэффициентов Фибоначчи и графического построения паттерна на графике целиком для четкого визуального подтверждения.
preview
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (CDC-модуль)

Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (CDC-модуль)

В статье представлен промежуточный этап реализации фреймворка EEMFlow средствами MQL5. Основное внимание уделено построению и интеграции CDC-модуля, включающего Self-Corrector, механизм Self-Attention для скорректированного потока и взвешенное объединение сигналов через маску доверия. Рассмотрены принципы архитектуры, порядок прямого и обратного проходов, а также особенности работы с локальными и глобальными признаками движения.
preview
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (ADM-модуль)

Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (ADM-модуль)

В статье представлена реализация Adaptive Density Module (ADM), ключевого компонента фреймворка EEMFlow, средствами MQL5. Рассмотрены этапы построения и объединения субмодулей MDC и MDS, а также интеграция ADM в существующую торговую модель BAT. Результаты тестирования на исторических данных EURUSD показывают устойчивый рост депозита, контролируемые просадки и высокую стабильность кривой эквити.
preview
Торговый инструментарий MQL5 (Часть 8): Внедрение и использование EX5-библиотеки для управления историей в коде

Торговый инструментарий MQL5 (Часть 8): Внедрение и использование EX5-библиотеки для управления историей в коде

В заключительной статье этой серии вы узнаете, как легко импортировать и применять EX5-библиотеку для управления историей (History Manager) в исходном коде MQL5 для обработки истории сделок в вашем аккаунте MetaTrader 5. С помощью простых вызовов функций в MQL5, занимающих всего одну строку кода, вы сможете эффективно управлять своими торговыми данными и анализировать их. Кроме того, вы научитесь создавать различные скрипты для анализа истории сделок и разрабатывать советник на основе ценовых показателей в качестве практических примеров использования. Используемый в качестве примера советник применяет данные о ценах и библиотеку History Manager EX5 для принятия обоснованных торговых решений, корректировки объемов сделок и реализации стратегий восстановления на основе ранее закрытых сделок.
preview
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (MDC-модуль)

Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (MDC-модуль)

Представляем реализацию ключевых компонентов фреймворка EEMFlow средствами MQL5. Статья демонстрирует, как многомасштабная обработка событий, спайковые модули FAM и адаптивное объединение признаков в MDC формируют структурированное и адаптированное к плотности рынка представление. Это позволяет стратегии эффективно выявлять значимые сигналы, сочетать микроимпульсы с глобальными тенденциями и повышать точность прогнозов, обеспечивая трейдеру надежный инструмент для анализа и принятия решений.
preview
Разработка инструментария для анализа движения цен (Часть 15): Введение в теорию четвертей (II) — советник Intrusion Detector

Разработка инструментария для анализа движения цен (Часть 15): Введение в теорию четвертей (II) — советник Intrusion Detector

В нашей предыдущей статье мы представили простой скрипт Quarters Drawer. Продолжая тему, создадим советник для отслеживания четвертей и предоставления информации о потенциальной реакции рынка на этих уровнях. В статье описана разработка инструмента для обнаружения необходимых зон.
preview
Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (EEMFlow)

Нейросети в трейдинге: Сеточная аппроксимация событийного потока как инструмент анализа ценовых паттернов (EEMFlow)

Статья знакомит с архитектурой фреймворка EEMFlow, ориентированного на работу с событийными потоками данных. Особое внимание уделяется адаптивным и многоуровневым модулям, которые обеспечивают гибкую обработку как глобальных, так и локальных изменений. Архитектура фреймворка позволяет сохранять ключевую информацию, минимизировать влияние шума и эффективно формировать признаки для дальнейшего анализа, делая EEMFlow перспективным инструментом для прогнозирования динамики финансовых рынков.
preview
Знакомство с языком MQL5 (Часть 20): Введение в гармонические паттерны

Знакомство с языком MQL5 (Часть 20): Введение в гармонические паттерны

В этой статье мы исследуем основы гармонических паттернов, их структуру и то, как они применяются в торговле. Вы узнаете о коррекциях и расширениях Фибоначчи, а также о том, как реализовать обнаружение гармонических паттернов на языке MQL5, тем самым закладывая основу для создания продвинутых торговых инструментов и советников.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Окончание)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Окончание)

Фреймворк BAT превращает хаотичный поток рыночных данных в точные прогнозы и взвешенные торговые решения. Тесты на исторических данных показывают стабильный рост капитала при контролируемых рисках. Архитектура модели проста, масштабируема и готова к дальнейшей оптимизации.
preview
Знакомство с MQL5 (Часть 19): Автоматизация обнаружения волн Вульфа

Знакомство с MQL5 (Часть 19): Автоматизация обнаружения волн Вульфа

Эта статья описывает, как программно выявлять бычьи и медвежьи паттерны волн Вульфа и торговать на их основе с помощью языка MQL5. Мы рассмотрим, как выявлять структуры волн Вульфа программным образом и исполнять сделки на их основе с помощью языка MQL5. Это включает в себя обнаружение ключевых точек свинга, проверку правил паттерна и подготовку советника к действию на основе найденных сигналов.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

В этой статье мы продолжаем реализацию фреймворка BAT средствами MQL5, показывая, как двунаправленная корреляция и модуль SATMA позволяют анализировать динамику рынка в контексте текущего состояния. Представлены ключевые архитектурных решения, позволяющие адаптировать фреймворк к анализу финансовых данных.
preview
Знакомство с языком MQL5 (Часть 18): Введение в паттерн "Волны Вульфа"

Знакомство с языком MQL5 (Часть 18): Введение в паттерн "Волны Вульфа"

В этой статье подробно объясняется паттерн волн Вульфа – как медвежьи, так и бычьи его вариации. В статье также проводится пошаговый разбор логики, используемой для выявления действительных сетапов на покупку и продажу на основе этого продвинутого графического паттерна.
preview
Знакомство с языком MQL5 (Часть 17): Создание советников для разворотов тренда

Знакомство с языком MQL5 (Часть 17): Создание советников для разворотов тренда

Эта статья обучает новичков тому, как создать советник на языке MQL5, который торгует на основе распознавания графических паттернов с использованием пробоев трендовых линий и разворотов. Изучив, как динамически извлекать значения трендовой линии и сравнивать их с ценовым действием, читатели смогут разрабатывать советники, способные выявлять графические паттерны, такие как восходящие и нисходящие трендовые линии, каналы, клинья, треугольники и многие другие, и торговать по ним.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

В статье представлен фреймворк BAT, обеспечивающий точное и адаптивное моделирование временной динамики. Используя двустороннюю временную корреляцию, BAT превращает последовательные изменения рыночных данных в структурированные, информативные представления. Модель сочетает высокую вычислительную эффективность с возможностью глубокой интеграции в торговые системы, позволяя выявлять как краткосрочные, так и долгосрочные паттерны движения.
preview
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Представляем адаптацию фреймворк E-STMFlow — современное решение для построения автономных торговых систем. В статье завершаем реализацию подходов, предложенных авторами фреймворка. Результаты тестирования демонстрируют стабильный рост капитала, минимальные просадки и предсказуемое распределение рисков, подтверждая практическую эффективность подхода и открывая перспективы дальнейшей оптимизации стратегии.