Artigos sobre como programar e utilizar robôs de negociação na linguagem MQL5

icon

Os experts que os desenvolvedores criam para o MetaTrader realizam uma grande variedade de tarefas. Entre elas estão o monitoramento de muitos instrumentos financeiros 24h por dia, a cópia de operações, a criação e o envio de relatórios, a análise de notícias e até mesmo o acesso dos traders à sua própria interface gráfica personalizada.

Os artigos podem abordar técnicas de programação, ideias matemáticas para processamento de dados, dicas para criar e encomendar robôs de negociação.

Novo artigo
recentes | melhores
preview
Redes neurais em trading: Transformer com codificação relativa

Redes neurais em trading: Transformer com codificação relativa

O aprendizado autossupervisionado pode ser uma forma eficaz de analisar grandes volumes de dados brutos não rotulados. O principal fator de sucesso é a adaptação dos modelos às particularidades dos mercados financeiros, o que melhora o desempenho dos métodos tradicionais. Este artigo apresentará um mecanismo alternativo de atenção, que permite levar em conta dependências relativas e inter-relações entre os dados brutos.
preview
Redes neurais em trading: Segmentação guiada (Conclusão)

Redes neurais em trading: Segmentação guiada (Conclusão)

Damos continuidade ao trabalho iniciado no artigo anterior sobre a construção do framework RefMask3D utilizando MQL5. Esse framework foi desenvolvido para um estudo aprofundado da interação multimodal e da análise de características em nuvens de pontos, com posterior identificação do objeto-alvo com base em uma descrição fornecida em linguagem natural.
preview
De Novato a Especialista: A Jornada Essencial no Comércio MQL5

De Novato a Especialista: A Jornada Essencial no Comércio MQL5

Desbloqueie seu potencial! Você está cercado de oportunidades. Descubra 3 segredos principais para iniciar sua jornada MQL5 ou levá-la para o próximo nível. Vamos mergulhar na discussão de dicas e truques para iniciantes e profissionais.
preview
Redes neurais em trading: Segmentação guiada

Redes neurais em trading: Segmentação guiada

Vamos conhecer um método de análise multimodal integrada para interagir e compreender características.
preview
Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit

Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit

Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.
preview
Redes neurais em trading: Segmentação de dados com base em expressões de referência

Redes neurais em trading: Segmentação de dados com base em expressões de referência

Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.
preview
Redes neurais em trading: Modelo de dupla atenção para previsão de tendências

Redes neurais em trading: Modelo de dupla atenção para previsão de tendências

Damos continuidade à discussão sobre o uso da representação linear por partes de séries temporais, iniciada no artigo anterior. Hoje, falaremos sobre a combinação desse método com outras abordagens de análise de séries temporais para melhorar a qualidade da previsão das tendências dos movimentos de preços.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 33): Kernels de Processos Gaussianos

Técnicas do MQL5 Wizard que você deve conhecer (Parte 33): Kernels de Processos Gaussianos

Os Kernels de Processos Gaussianos são a função de covariância da Distribuição Normal que pode desempenhar um papel em previsões. Exploramos esse algoritmo único em uma classe de sinal personalizada em MQL5 para ver se pode ser utilizado como um sinal principal de entrada e saída.
preview
Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos

Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos

Nesta série de artigos, revisitamos estratégias clássicas para ver se podemos melhorá-las usando IA. No artigo de hoje, vamos examinar a popular estratégia de análise de múltiplos tempos gráficos para avaliar se a estratégia seria aprimorada com IA.
preview
Reimaginando Estratégias Clássicas (Parte V): Análise de Múltiplos Símbolos no USDZAR

Reimaginando Estratégias Clássicas (Parte V): Análise de Múltiplos Símbolos no USDZAR

Nesta série de artigos, revisitamos estratégias clássicas para verificar se podemos melhorá-las usando IA. No artigo de hoje, examinaremos uma estratégia popular de análise de múltiplos símbolos utilizando uma cesta de ativos correlacionados. Focaremos no par de moedas exótico USDZAR.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda

A função de perda (Loss Function) é uma métrica fundamental nos algoritmos de aprendizado de máquina, que fornece feedback para o processo de aprendizado ao quantificar o quão bem um determinado conjunto de parâmetros se comporta em comparação com o valor-alvo esperado. Vamos explorar os diferentes formatos dessa função na classe personalizada do Assistente MQL5.
preview
EA MQL5 integrado ao Telegram (Parte 2): Envio de sinais do MQL5 para o Telegram

EA MQL5 integrado ao Telegram (Parte 2): Envio de sinais do MQL5 para o Telegram

Nesta parte do artigo, vamos criar um EA MQL5 integrado ao Telegram que envia sinais de cruzamento de médias móveis para o mensageiro. Descreveremos detalhadamente o processo de geração de sinais de negociação com base nesses cruzamentos, implementaremos o código necessário em MQL5 e garantiremos uma integração contínua. Como resultado, teremos um sistema que envia alertas de negociação em tempo real diretamente para um grupo no Telegram.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização

Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização

A regularização é uma forma de penalizar a função de perda em proporção ao peso discreto aplicado ao longo das várias camadas de uma rede neural. Vamos observar a importância de algumas formas de regularização e o impacto que isso pode ter em testes realizados com um Expert Advisor montado por um assistente.
preview
EA MQL5 integrado ao Telegram (Parte 1): Envio de mensagens do MQL5 para o Telegram

EA MQL5 integrado ao Telegram (Parte 1): Envio de mensagens do MQL5 para o Telegram

Neste artigo, criaremos um EA na linguagem MQL5 que enviará mensagens para o Telegram por meio de um bot. Configuraremos os parâmetros necessários, incluindo o token de API do bot e o identificador do chat, e então realizaremos uma requisição HTTP POST para entregar as mensagens. Em seguida, processaremos a resposta para garantir a entrega bem-sucedida e lidaremos com possíveis erros.
preview
Integração MQL5: Python

Integração MQL5: Python

Python é uma linguagem de programação bem conhecida e popular, com muitos recursos, especialmente nas áreas de finanças, ciência de dados, Inteligência Artificial e Aprendizado de Máquina. Python é uma ferramenta poderosa que também pode ser útil no trading. O MQL5 nos permite usar essa poderosa linguagem como uma integração para alcançar nossos objetivos de forma eficaz. Neste artigo, compartilharemos como podemos usar Python como uma integração no MQL5, depois de aprender algumas informações básicas sobre Python.
preview
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 8): Desenvolvimento de Expert Advisor (I)

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 8): Desenvolvimento de Expert Advisor (I)

Nesta discussão, vamos criar nosso primeiro Expert Advisor em MQL5 com base no indicador que fizemos no artigo anterior. Vamos cobrir todas as funcionalidades necessárias para tornar o processo automático, incluindo o gerenciamento de riscos. Isso beneficiará extensivamente os usuários ao avançarem da execução manual de negociações para sistemas automatizados.
preview
Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5

Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5

O artigo descreve as etapas para a implementação do EA Deus baseado nos indicadores RSI e média móvel para gerenciar a negociação automatizada.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina

A normalização em lote é um pré-processamento dos dados antes de sua entrada em um algoritmo de aprendizado de máquina, como uma rede neural. Ao aplicá-la, é essencial levar em conta o tipo de ativação que será usado pelo algoritmo. Exploraremos diferentes abordagens para extrair vantagens com um EA construído no Assistente.
preview
Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de estratégia de trading com LLM (I) - Ajuste fino

Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de estratégia de trading com LLM (I) - Ajuste fino

Os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial que evolui rapidamente. E para aproveitar isso devemos pensar em como integrar LLMs avançados em nossa negociação algorítmica Muitos acham desafiador ajustar esses modelos de acordo com suas necessidades, implantá-los localmente e, logo, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.
preview
Criando um painel dinâmico multissímbolo e multiperíodo do Índice de Força Relativa (RSI) em MQL5

Criando um painel dinâmico multissímbolo e multiperíodo do Índice de Força Relativa (RSI) em MQL5

Este artigo aborda o desenvolvimento de um painel dinâmico multissímbolo e multiperíodo do indicador RSI em MQL5. O painel tem como objetivo fornecer aos traders os valores do RSI em tempo real para diferentes símbolos e períodos gráficos. Ele será equipado com botões interativos, atualizações em tempo real e indicadores de cores para ajudar os traders a tomarem decisões informadas.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 29): Taxas de aprendizado e perceptrons multicamadas

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 29): Taxas de aprendizado e perceptrons multicamadas

Estamos concluindo a análise da sensibilidade da taxa de aprendizado ao desempenho do EA, estudando taxas de aprendizado adaptáveis Essas taxas devem ser ajustadas para cada parâmetro da camada durante o treinamento, por isso precisamos avaliar os potenciais benefícios em relação às perdas esperadas no desempenho.
preview
MQL5 Trading Toolkit (Parte 2): Expansão e Aplicação da Biblioteca EX5 para Gerenciamento de Posições

MQL5 Trading Toolkit (Parte 2): Expansão e Aplicação da Biblioteca EX5 para Gerenciamento de Posições

Aqui, você aprenderá a importar e utilizar bibliotecas EX5 em seu código ou projetos MQL5. Neste artigo, expandiremos a biblioteca EX5 criada anteriormente, adicionando mais funções de gerenciamento de posições e criando dois Expert Advisors (EA). No primeiro exemplo, usaremos o indicador técnico Variable Index Dynamic Average para desenvolver um EA baseado em uma estratégia de trailing stop. No segundo, implementaremos um painel de negociação para monitorar, abrir, fechar e modificar posições. Esses dois exemplos demonstrarão como utilizar a biblioteca EX5 aprimorada para o gerenciamento de posições.
preview
Redes neurais em trading: Abordagem sem máscara para previsão do movimento de preços

Redes neurais em trading: Abordagem sem máscara para previsão do movimento de preços

Neste artigo, apresentamos o método Mask-Attention-Free Transformer (MAFT) e sua aplicação na área de trading. Ao contrário dos Transformers tradicionais, que exigem mascaramento de dados ao processar sequências, o MAFT otimiza o processo de atenção, eliminando a necessidade de mascaramento, o que melhora significativamente a eficiência computacional.
preview
Redes neurais em trading: Superpoint Transformer (SPFormer)

Redes neurais em trading: Superpoint Transformer (SPFormer)

Neste artigo, apresentamos um método de segmentação de objetos 3D baseado no Superpoint Transformer (SPFormer), que elimina a necessidade de agregação intermediária de dados. Isso acelera o processo de segmentação e melhora o desempenho do modelo.
preview
Redes neurais em trading: Detecção de objetos com reconhecimento de cena (HyperDet3D)

Redes neurais em trading: Detecção de objetos com reconhecimento de cena (HyperDet3D)

Apresentamos uma nova abordagem para a detecção de objetos por meio de hiper-redes. Uma hiper-rede de geração de pesos para o modelo subjacente, que nos permite levar em conta as peculiaridades do estado atual do mercado. Essa abordagem melhora a precisão da previsão, adaptando o modelo a diferentes condições de mercado.
preview
Construa Consultores Especialistas Autossustentáveis com MQL5 e Python

Construa Consultores Especialistas Autossustentáveis com MQL5 e Python

Neste artigo, discutiremos como podemos construir Consultores Especialistas capazes de selecionar e mudar autonomamente as estratégias de negociação com base nas condições prevalentes do mercado. Vamos aprender sobre Cadeias de Markov e como elas podem ser úteis para nós, como traders algorítmicos.
preview
Redes neurais em trading: Explorando a estrutura local dos dados

Redes neurais em trading: Explorando a estrutura local dos dados

A identificação eficaz e a preservação da estrutura local dos dados de mercado em meio ao ruído são tarefas cruciais no trading. Embora o uso do mecanismo Self-Attention tenha mostrado bons resultados no processamento desses dados, o método clássico não leva em conta as características locais da estrutura original. Neste artigo, proponho conhecer um algoritmo capaz de considerar essas dependências estruturais.
preview
Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger

Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger

Este artigo explora uma estratégia de trading que integra a Análise Discriminante Linear (LDA) com Bandas de Bollinger, aproveitando previsões de zonas categóricas para gerar sinais estratégicos de entrada no mercado.
preview
Redes neurais em trading: Transformer para nuvens de pontos (Pointformer)

Redes neurais em trading: Transformer para nuvens de pontos (Pointformer)

Neste artigo, falaremos sobre os algoritmos que utilizam métodos de atenção para resolver tarefas de detecção de objetos em nuvens de pontos. A detecção de objetos em nuvens de pontos é de grande importância para diversas aplicações práticas.
preview
Redes neurais em trading: Aprendizado hierárquico de características em nuvens de pontos

Redes neurais em trading: Aprendizado hierárquico de características em nuvens de pontos

Continuamos estudando algoritmos para extração de características de nuvens de pontos. Neste artigo, exploraremos mecanismos para aumentar a eficiência do método PointNet.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado

Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado

A Taxa de Aprendizado é um tamanho de passo em direção a um objetivo de treinamento nos processos de treinamento de muitos algoritmos de aprendizado de máquina. Examinamos o impacto que seus diversos cronogramas e formatos podem ter no desempenho de uma Rede Generativa Adversária, um tipo de rede neural que já havíamos analisado em um artigo anterior.
preview
Redes neurais em trading: Transformer vetorial hierárquico (HiVT)

Redes neurais em trading: Transformer vetorial hierárquico (HiVT)

Apresentamos o método Transformer Vetorial Hierárquico (HiVT), desenvolvido para a previsão rápida e precisa de séries temporais multimodais.
preview
Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

As Redes Neurais Convolucionais (CNNs) são renomadas por sua capacidade de detectar padrões em imagens e vídeos, com aplicações em diversos campos. Neste artigo, exploramos o potencial das CNNs para identificar padrões valiosos nos mercados financeiros e gerar sinais de trading eficazes para bots de negociação no MetaTrader 5. Vamos descobrir como essa técnica de aprendizado profundo pode ser aproveitada para decisões de trading mais inteligentes.
preview
Combine Estratégias de Análise Fundamental e Técnica no MQL5 Para Iniciantes

Combine Estratégias de Análise Fundamental e Técnica no MQL5 Para Iniciantes

Neste artigo, discutiremos como integrar princípios de seguimento de tendência e análise fundamental em um único Expert Advisor para construir uma estratégia mais robusta. Este artigo demonstrará como qualquer pessoa pode facilmente começar a construir algoritmos de trading personalizados usando MQL5.
preview
Redes neurais em trading: Análise de nuvem de pontos (PointNet)

Redes neurais em trading: Análise de nuvem de pontos (PointNet)

A análise direta da nuvem de pontos permite evitar um aumento excessivo no volume de dados e aprimorar a eficiência dos modelos em tarefas de classificação e segmentação. Abordagens deste tipo demonstram um bom desempenho e resistência a perturbações nos dados brutos.
preview
Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)

Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)

Continuaremos a explorar o método Transformer Vetorial Hierárquico. Neste artigo, concluiremos a construção do modelo, realizando seu treinamento e teste em dados históricos reais.
preview
Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)

Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)

Compreender o comportamento de agentes é importante em diversas áreas, mas a maioria dos métodos se concentra em uma única tarefa (compreensão, remoção de ruído ou previsão), o que reduz sua eficácia em cenários reais. Neste artigo, apresento um modelo capaz de se adaptar à solução de diferentes tarefas.
preview
Ciência de Dados e ML (Parte 26): A Batalha Definitiva em Previsão de Séries Temporais — Redes Neurais LSTM vs GRU

Ciência de Dados e ML (Parte 26): A Batalha Definitiva em Previsão de Séries Temporais — Redes Neurais LSTM vs GRU

No artigo anterior, discutimos uma RNN simples que, apesar de sua incapacidade de entender dependências de longo prazo nos dados, conseguiu desenvolver uma estratégia lucrativa. Neste artigo, discutiremos tanto a Memória de Longo e Curto Prazo (LSTM) quanto a Unidade Recorrente com Portões (GRU). Essas duas redes foram introduzidas para superar as limitações de uma RNN simples e superá-la.
preview
Redes neurais em trading: Método abrangente de previsão de trajetórias (Traj-LLM)

Redes neurais em trading: Método abrangente de previsão de trajetórias (Traj-LLM)

Neste artigo, quero apresentar a você um método interessante de previsão de trajetórias, desenvolvido para resolver problemas relacionados ao movimento autônomo de veículos. Os autores do método combinaram os melhores elementos de diferentes soluções arquitetônicas.
preview
Introdução ao MQL5 (Parte 8): Guia do Iniciante para Construção de Expert Advisors (II)

Introdução ao MQL5 (Parte 8): Guia do Iniciante para Construção de Expert Advisors (II)

Este artigo aborda perguntas comuns de iniciantes nos fóruns de MQL5 e apresenta soluções práticas. Aprenda a realizar tarefas essenciais, como comprar e vender, obter preços de velas e gerenciar aspectos de negociação automatizada, como limites de operações, períodos de negociação e limites de lucro/perda. Receba orientações passo a passo para aprimorar sua compreensão e implementação desses conceitos no MQL5.