Artigos sobre como programar e utilizar robôs de negociação na linguagem MQL5

icon

Os experts que os desenvolvedores criam para o MetaTrader realizam uma grande variedade de tarefas. Entre elas estão o monitoramento de muitos instrumentos financeiros 24h por dia, a cópia de operações, a criação e o envio de relatórios, a análise de notícias e até mesmo o acesso dos traders à sua própria interface gráfica personalizada.

Os artigos podem abordar técnicas de programação, ideias matemáticas para processamento de dados, dicas para criar e encomendar robôs de negociação.

Novo artigo
recentes | melhores
preview
Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes

Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes

O EA em desenvolvimento deve apresentar bons resultados ao operar com diferentes corretoras. Porém, até agora, os testes foram realizados com base em cotações de uma conta de demonstração da MetaQuotes. Vamos verificar se o EA está pronto para operar em contas reais com cotações diferentes das utilizadas durante os testes e otimizações.
preview
Teoria do caos no trading (Parte 1): Introdução, aplicação nos mercados financeiros e o indicador de Lyapunov

Teoria do caos no trading (Parte 1): Introdução, aplicação nos mercados financeiros e o indicador de Lyapunov

É possível aplicar a teoria do caos nos mercados financeiros? Vamos explorar nesta matéria como a teoria clássica do caos e os sistemas caóticos diferem do conceito proposto por Bill Williams.
preview
Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real

Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real

À medida que nos aproximamos de um EA pronto, é necessário prestar atenção em questões secundárias na etapa de teste da estratégia de trading, mas que se tornam importantes ao migrar para o trading real.
preview
Desenvolvendo um EA multimoeda (Parte 14): Alteração adaptativa dos volumes no gerenciador de risco

Desenvolvendo um EA multimoeda (Parte 14): Alteração adaptativa dos volumes no gerenciador de risco

O gerenciador de risco anteriormente desenvolvido continha apenas funcionalidades básicas. Vamos explorar caminhos para aprimorá-lo, buscando melhorar os resultados de negociação sem alterar a lógica das estratégias de trading.
preview
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 5): Sistema de Notificação (Parte III)

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 5): Sistema de Notificação (Parte III)

Esta parte da série de artigos é dedicada à integração do WhatsApp com o MetaTrader 5 para notificações. Incluímos um fluxograma para simplificar o entendimento e discutiremos a importância das medidas de segurança na integração. O principal objetivo dos indicadores é simplificar a análise por meio da automação, e eles devem incluir métodos de notificação para alertar os usuários quando condições específicas forem atendidas. Descubra mais neste artigo.
preview
Data Science e Machine Learning (Parte 25): Previsão de Séries Temporais de Forex Usando uma Rede Neural Recorrente (RNN)

Data Science e Machine Learning (Parte 25): Previsão de Séries Temporais de Forex Usando uma Rede Neural Recorrente (RNN)

Redes neurais recorrentes (RNNs) se destacam em utilizar informações passadas para prever eventos futuros. Suas notáveis capacidades preditivas foram aplicadas em diversos domínios com grande sucesso. Neste artigo, implementaremos modelos de RNN para prever tendências no mercado de forex, demonstrando seu potencial para aumentar a precisão das previsões no trading de forex.
preview
Redes neurais em trading: Representação linear por partes de séries temporais

Redes neurais em trading: Representação linear por partes de séries temporais

Este artigo é um pouco diferente dos trabalhos anteriores desta série. Nele, discutiremos uma representação alternativa de séries temporais. A representação linear por partes de séries temporais é um método de aproximação de séries temporais usando funções lineares em pequenos intervalos.
preview
Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Ao estudar diferentes arquiteturas de construção de modelos, temos dado pouca atenção ao processo de treinamento dos modelos. Neste artigo, tentarei preencher essa lacuna.
preview
Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)

Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)

A extração e integração eficazes de dependências de longo prazo e características de curto prazo continuam sendo uma tarefa importante na análise de séries temporais. Compreendê-las e integrá-las corretamente é necessário para criar modelos preditivos precisos e confiáveis.
preview
Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer

Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer

Os modelos baseados na arquitetura Transformer demonstram alta eficiência, mas seu uso é dificultado pelos altos custos de recursos, tanto na fase de treinamento quanto durante a utilização prática. Neste artigo, proponho conhecer algoritmos que permitem reduzir o uso de memória por esses modelos.
preview
Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)

Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)

Ao estudarmos o método FEDformer, abrimos uma porta para a área de representação de séries temporais no domínio da frequência. No novo artigo, continuaremos o tema iniciado, e analisaremos um método que permite não apenas conduzir uma análise, mas também prever estados futuros no domínio frequencial.
preview
Gerenciador de riscos para trading algorítmico

Gerenciador de riscos para trading algorítmico

Os objetivos deste artigo são: demonstrar a necessidade obrigatória de um gerenciador de riscos, adaptar os princípios de controle de risco para trading algorítmico em uma classe específica, permitindo que todos possam comprovar, de forma independente, a eficácia da abordagem de normalização de risco no day trading e em investimentos nos mercados financeiros. Neste artigo, exploraremos em detalhes a criação de uma classe de gerenciador de riscos para trading algorítmico, continuando o tópico abordado no artigo anterior sobre o gerenciador de riscos para trading manual.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Médias Móveis são um indicador muito comum, usado e compreendido pela maioria dos traders. Exploramos possíveis casos de uso que podem não ser tão comuns dentro dos Expert Advisors montados no MQL5 Wizard.
preview
Construção de um modelo de restrição de tendência de velas (Parte 1): Para EAs e indicadores técnicos

Construção de um modelo de restrição de tendência de velas (Parte 1): Para EAs e indicadores técnicos

Este artigo é voltado para desenvolvedores iniciantes e experientes em MQL5. Ele oferece um código que define indicadores para gerar sinais, limitando-os com base nas tendências de timeframes mais altos. Dessa forma, traders podem aprimorar suas estratégias ao incluir uma visão mais ampla do mercado, o que pode resultar em sinais de negociação potencialmente mais confiáveis.
preview
Otimização Automatizada de Parâmetros para Estratégias de Trading Usando Python e MQL5

Otimização Automatizada de Parâmetros para Estratégias de Trading Usando Python e MQL5

Existem vários tipos de algoritmos para auto-otimização de estratégias de trading e parâmetros. Esses algoritmos são usados para melhorar automaticamente as estratégias de trading com base em dados históricos e atuais de mercado. Neste artigo, veremos um desses algoritmos com exemplos em Python e MQL5.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 5): Sistema de Notificação (Parte II)

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 5): Sistema de Notificação (Parte II)

Hoje, estamos discutindo uma integração funcional do Telegram para notificações do Indicador MetaTrader 5 usando o poder do MQL5, em parceria com Python e a API do Bot do Telegram. Explicaremos tudo em detalhes para que ninguém perca nenhum ponto. Ao final deste projeto, você terá adquirido conhecimentos valiosos para aplicar em seus projetos.
preview
Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Um guia abrangente para desenvolver um algoritmo de negociação automatizado baseado na estratégia de Suporte e Resistência. Informações detalhadas sobre todos os aspectos da criação de um expert advisor em MQL5 e testá-lo no MetaTrader 5 – desde a análise dos comportamentos de faixa de preço até o gerenciamento de risco.
preview
Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais

Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais

Ao trabalhar com séries temporais, geralmente usamos os dados na sequência histórica. Mas isso é realmente o mais eficiente? Há quem acredite que modificar a sequência dos dados iniciais pode aumentar a eficácia dos modelos de aprendizado. Neste artigo, vou apresentar um desses métodos.
preview
Desenvolvendo um EA Multimoeda (Parte 13): Automação da segunda etapa — Seleção de grupos

Desenvolvendo um EA Multimoeda (Parte 13): Automação da segunda etapa — Seleção de grupos

A primeira etapa do processo automatizado de otimização já foi implementada. Para diferentes símbolos e timeframes, realizamos a otimização com base em vários critérios e armazenamos as informações dos resultados de cada execução em um banco de dados. Agora, vamos nos dedicar à seleção dos melhores grupos de conjuntos de parâmetros encontrados na primeira etapa.
preview
Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 5): Sistema de Notificação (Parte I)

Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 5): Sistema de Notificação (Parte I)

Dividiremos o código principal do MQL5 em trechos específicos para ilustrar a integração do Telegram e WhatsApp para receber notificações de sinais do indicador de Restrição de Tendência que estamos criando nesta série de artigos. Isso ajudará traders, tanto iniciantes quanto desenvolvedores experientes, a compreender o conceito com mais facilidade. Primeiro, abordaremos a configuração do MetaTrader 5 para notificações e sua importância para o usuário. Isso ajudará os desenvolvedores a tomarem nota antecipadamente para aplicar posteriormente em seus sistemas.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs

Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs

As Redes Neurais Convolucionais são outro algoritmo de aprendizado de máquina que tende a se especializar em decompor conjuntos de dados multidimensionais em partes constituintes principais. Vamos ver como isso é normalmente alcançado e explorar uma possível aplicação para traders em outra classe de sinais do MQL5 Wizard.
preview
Desenvolvendo uma estratégia Martingale de Recuperação de Zona em MQL5

Desenvolvendo uma estratégia Martingale de Recuperação de Zona em MQL5

O artigo discute, de forma detalhada, os passos que precisam ser implementados para a criação de um advisor especializado baseado no algoritmo de negociação de Recuperação de Zona. Isso ajuda a automatizar o sistema, economizando tempo para os negociadores algorítmicos.
preview
MQL5 Trading Toolkit (Parte 1): Desenvolvendo uma Biblioteca EX5 para Gerenciamento de Posições

MQL5 Trading Toolkit (Parte 1): Desenvolvendo uma Biblioteca EX5 para Gerenciamento de Posições

Aprenda a criar um kit de ferramentas para desenvolvedores para gerenciar várias operações de posição com MQL5. Neste artigo, vou demonstrar como criar uma biblioteca de funções (ex5) que realizará operações de gerenciamento de posições, de simples a avançadas, incluindo o tratamento automático e a geração de relatórios dos diferentes erros que surgem ao lidar com tarefas de gerenciamento de posições com MQL5.
preview
Um Guia Passo a Passo sobre a Estratégia de Quebra de Estrutura (BoS)

Um Guia Passo a Passo sobre a Estratégia de Quebra de Estrutura (BoS)

Um guia abrangente para desenvolver um algoritmo de negociação automatizado baseado na estratégia de Quebra de Estrutura (BoS). Informações detalhadas sobre todos os aspectos da criação de um consultor em MQL5 e testando-o no MetaTrader 5 — desde a análise de suporte e resistência de preços até a gestão de riscos.
preview
Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)

Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)

Neste artigo, continuamos a implementação das abordagens do ATFNet — um modelo que adapta e combina os resultados de 2 blocos (frequencial e temporal) de previsão de séries temporais.
preview
Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo

Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo

Os autores do método FreDF confirmaram experimentalmente a vantagem da previsão combinada nas áreas de frequência e tempo. No entanto, o uso de um hiperparâmetro de ponderação não é ideal para séries temporais não estacionárias. Neste artigo, proponho que você conheça um método de combinação adaptativa de previsões nas áreas de frequência e tempo.
preview
Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

No EA em desenvolvimento, já temos um mecanismo de controle de rebaixamento implementado. No entanto, ele tem uma natureza probabilística, pois se baseia nos resultados de testes com dados históricos de preços. Assim, o rebaixamento, embora com pequena probabilidade, às vezes pode exceder os valores máximos esperados. Vamos tentar adicionar um mecanismo que garanta a manutenção de um nível de rebaixamento predefinido.
preview
Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)

Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)

Continuamos a explorar a análise e previsão de séries temporais na área de frequência. E nesta matéria, apresentaremos um novo método de previsão nessa área, que pode ser adicionado a muitos dos algoritmos que já estudamos anteriormente.
preview
Desenvolvendo um EA multimoeda (Parte 11): Início da automação do processo de otimização

Desenvolvendo um EA multimoeda (Parte 11): Início da automação do processo de otimização

Para obter um bom EA, precisamos selecionar muitos bons conjuntos de parâmetros para as instâncias das estratégias de trading. Isso pode ser feito manualmente, executando a otimização em diferentes símbolos e, em seguida, escolhendo os melhores resultados. Mas é melhor delegar esse trabalho para um programa e se concentrar em atividades mais produtivas.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 22): GANs Condicionais

Técnicas do MQL5 Wizard que você deve conhecer (Parte 22): GANs Condicionais

Redes Generativas Adversariais são uma combinação de Redes Neurais que treinam entre si para obter resultados mais precisos. Adotamos o tipo condicional dessas redes ao buscarmos uma possível aplicação na previsão de séries temporais financeiras dentro de uma Classe de Sinais de Expert.
preview
Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Você sabia que podemos obter mais precisão ao prever certos indicadores técnicos do que ao prever o preço subjacente de um símbolo negociado? Junte-se a nós para explorar como aproveitar essa percepção para melhores estratégias de negociação
preview
Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Com o rápido desenvolvimento da inteligência artificial hoje em dia, os modelos de linguagem (LLMs) são uma parte importante da IA, então devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e depois aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
preview
Reimaginando Estratégias Clássicas: Petróleo Bruto

Reimaginando Estratégias Clássicas: Petróleo Bruto

Neste artigo, revisitamos uma estratégia clássica de negociação de petróleo bruto com o objetivo de aprimorá-la, utilizando algoritmos de aprendizado de máquina supervisionado. Vamos construir um modelo de mínimos quadrados para prever os preços futuros do petróleo Brent, com base na diferença entre os preços do Brent e do WTI. Nosso objetivo é identificar um indicador líder de futuras mudanças nos preços do Brent.
preview
Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.
preview
Construindo um Modelo de Restrição de Tendências de Candlestick (Parte 3): Detectando mudanças nas tendências ao usar este sistema

Construindo um Modelo de Restrição de Tendências de Candlestick (Parte 3): Detectando mudanças nas tendências ao usar este sistema

Este artigo explora como a divulgação de notícias econômicas, o comportamento dos investidores e vários fatores podem influenciar as reversões de tendências de mercado. Inclui uma explicação em vídeo e prossegue incorporando código MQL5 ao nosso programa para detectar reversões de tendência, nos alertar e tomar as ações apropriadas com base nas condições de mercado. Isso se baseia em artigos anteriores da série.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica

Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica

A Regressão Simbólica é uma forma de regressão que começa com poucas ou nenhuma suposição sobre qual seria o modelo subjacente que mapeia os conjuntos de dados em estudo. Embora possa ser implementada por Métodos Bayesianos ou Redes Neurais, analisamos como uma implementação com Algoritmos Genéticos pode ajudar a personalizar uma classe de sinal especialista utilizável no MQL5 Wizard.
preview
Desenvolvendo um EA multimoeda (Parte 10): Criação de objetos a partir de uma string

Desenvolvendo um EA multimoeda (Parte 10): Criação de objetos a partir de uma string

O plano de desenvolvimento do EA prevê várias etapas com o salvamento de resultados intermediários em um banco de dados. Recuperá-los de lá é possível apenas na forma de strings ou números, não como objetos. Portanto, precisamos de uma maneira de recriar no EA os objetos necessários a partir de strings lidas do banco de dados.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.
preview
Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)

Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)

Nesta quarta parte, revisitamos os Expert Advisors (EAs) Simple Hedge e Simple Grid desenvolvidos anteriormente. Nosso foco agora é refinar o Simple Grid EA por meio de análise matemática e uma abordagem de força bruta, visando o uso ideal da estratégia. Este artigo mergulha profundamente na otimização matemática da estratégia, preparando o terreno para futuras explorações de otimização baseada em código em artigos posteriores.
preview
Arbitragem Estatística com previsões

Arbitragem Estatística com previsões

Vamos explorar a arbitragem estatística, pesquisar com Python símbolos correlacionados e cointegrados, criar um indicador para o coeficiente de Pearson e desenvolver um EA para negociar arbitragem estatística com previsões feitas com Python e modelos ONNX.