Artigos sobre como programar e utilizar robôs de negociação na linguagem MQL5

icon

Expert Advisors criados para a plataforma MetaTrader executam uma variedade de funções implementadas pelos seus desenvolvedores. Robôs de negociação podem acompanhar símbolos financeiros durante 24 horas por dia, copiar negócios, criar e enviar relatórios, analisar notícias e ainda fornecer interfaces gráficas específicas e personalizada.

Os artigos descrevem as técnicas de programação, idéias matemáticas de processamento de dados, dicas sobre como criar e comprar os robôs de negociação.

Novo artigo
recente | principal
preview
Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (I)

Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (I)

Libere todo o poder da representação de dados dinâmicos em suas estratégias de negociação ou utilitários com o nosso guia detalhado para desenvolver uma GUI móvel em MQL5. Mergulhe nos eventos do gráfico e saiba como projetar e implementar uma GUI móvel simples e múltipla em um único gráfico. O artigo também aborda a adição de elementos à GUI, aumentando sua funcionalidade e apelo estético.
preview
Redes neurais de maneira fácil (Parte 41): Modelos Hierárquicos

Redes neurais de maneira fácil (Parte 41): Modelos Hierárquicos

Este artigo descreve modelos hierárquicos de aprendizado que propõem uma abordagem eficaz para resolver tarefas complexas de aprendizado de máquina. Os modelos hierárquicos consistem em vários níveis, cada um responsável por aspectos diferentes da tarefa.
preview
Algoritmo de recompra: Simulação de negociação em várias moedas

Algoritmo de recompra: Simulação de negociação em várias moedas

Neste artigo, criaremos um modelo matemático para simular a precificação em várias moedas e concluiremos o estudo, que comecei no artigo anterior, sobre o princípio de diversificação como parte da busca por mecanismos para aumentar a eficiência da negociação.
preview
Teoria das Categorias em MQL5 (Parte 8): Monoides

Teoria das Categorias em MQL5 (Parte 8): Monoides

Esse artigo continua a série sobre a implementação da teoria da categoria em MQL5. Aqui, apresentamos os monoides como um domínio (conjunto) que distingue a teoria da categoria de outros métodos de classificação de dados ao incorporar regras e um elemento de equivalência.
preview
Algoritmo de recompra: modelo matemático para aumentar a eficiência

Algoritmo de recompra: modelo matemático para aumentar a eficiência

Neste artigo, usaremos o algoritmo de recompra como um guia para um entendimento mais profundo da eficiência dos sistemas de negociação e começaremos a trabalhar com os princípios gerais de aumentar a eficiência de negociação usando matemática e lógica, bem como aplicar os métodos mais inovadores para aumentar a eficiência no contexto de usar qualquer sistema de negociação.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados

Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados

Deseja descobrir uma nova metodologia de negociação que facilite a orientação em mercados complexos e voláteis? Explore os mapas de Kohonen - uma versão inovadora de redes neurais artificiais, capazes de identificar regularidades e tendências ocultas nos dados do mercado. Neste texto, analisaremos a funcionalidade dos mapas de Kohonen e a forma de utilizá-los na elaboração de estratégias de negociação eficazes. Estou convencido de que esta abordagem inédita será do interesse de traders novatos e experientes.
preview
Redes neurais de maneira fácil (Parte 37): atenção esparsa

Redes neurais de maneira fácil (Parte 37): atenção esparsa

No artigo anterior, abordamos modelos relacionais que usavam mecanismos de atenção. Uma das características desses modelos era o aumento do uso de recursos computacionais. O artigo de hoje apresenta um dos mecanismos para reduzir o número de operações computacionais dentro do bloco Self-Attention, o que aumenta o desempenho geral do modelo.
preview
Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições

Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições

A teoria das categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta série de artigos tem como objetivo descrever alguns de seus conceitos a fim de criar uma biblioteca aberta e utilizar ainda mais essa seção notável na criação de estratégias de negociação.
preview
Redes neurais de maneira fácil (Parte 36): Modelos relacionais de aprendizado por reforço

Redes neurais de maneira fácil (Parte 36): Modelos relacionais de aprendizado por reforço

Nos modelos de aprendizado por reforço discutidos anteriormente, usamos diferentes variantes de redes convolucionais, que são capazes de identificar diferentes corpos nos dados brutos. A principal vantagem das redes convolucionais é sua capacidade de identificar objetos independentemente de sua localização. No entanto, as redes convolucionais nem sempre são capazes de lidar com as diversas deformações e ruídos que os objetos apresentam. Mas esses problemas podem ser resolvidos pelo modelo relacional.
preview
Experimentos com redes neurais (Parte 4): Padrões

Experimentos com redes neurais (Parte 4): Padrões

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 12): É possível ter sucesso no mercado com redes neurais de autoaprendizagem?

Ciência de Dados e Aprendizado de Máquina (Parte 12): É possível ter sucesso no mercado com redes neurais de autoaprendizagem?

Certamente muitas pessoas estão cansadas ​​​​de tentar constantemente prever o mercado de ações. Você gostaria de ter uma bola de cristal que o ajudasse a tomar melhores decisões de investimento? As redes neurais autoaprendentes podem ser a solução para isso. Neste artigo, vamos ver se esses algoritmos poderosos podem ajudar a surfar na onda e ser mais espertos que o mercado de ações. Ao analisar grandes volumes de dados e identificar padrões, as redes neurais autoaprendentes podem fazer previsões que geralmente são mais precisas do que as previsões dos traders. Vamos descobrir se essas tecnologias avançadas podem ser utilizadas para tomar decisões de investimento mais inteligentes e obter mais lucros.
preview
Desenvolvendo um fator de qualidade para os EAs

Desenvolvendo um fator de qualidade para os EAs

Nesse artigo vamos explicar como desenvolver um fator de qualidade para ser retornado pelo seu EA no testador de estratégia. Iremos mostrar duas formas de cálculo conhecidas (Van Tharp e Sunny Harris).
preview
Esperança moral na negociação

Esperança moral na negociação

Este artigo trata da esperança moral. Veremos vários exemplos de como ela é aplicada na negociação e quais resultados podem ser obtidos com ela.
preview
Como escolher um Expert Advisor: Vinte caraterísticas de um robô de baixa qualidade

Como escolher um Expert Advisor: Vinte caraterísticas de um robô de baixa qualidade

Neste artigo, iremos responder à pergunta de como escolher o Expert Advisor correto. Quais são os mais adequados para o nosso portfólio e como podemos filtrar a maioria dos robôs de negociação disponíveis no mercado? Este artigo apresenta vinte caraterísticas evidentes de um EA de baixa qualidade. Ele ajudará você a tomar decisões mais informadas e criar uma coleção de EAs lucrativos.
preview
Experiências com redes neurais (Parte 3): Uso pratico

Experiências com redes neurais (Parte 3): Uso pratico

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 05): cadeias de Markov

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 05): cadeias de Markov

As cadeias de Markov são uma poderosa ferramenta matemática que pode ser usada para modelar e prever dados de séries temporais em vários campos, incluindo finanças. Na modelagem e previsão de séries temporais financeiras, as cadeias de Markov são frequentemente usadas para modelar a evolução de ativos financeiros ao longo do tempo, ativo esses como preços de ações ou pares de moedas. Uma das principais vantagens dos modelos das cadeias de Markov é sua simplicidade e facilidade de uso.
preview
Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Continuamos a estudar os algoritmos de aprendizado Q distribuído. Em artigos anteriores, já discutimos os algoritmos de aprendizado Q distribuído e de quantil. No primeiro, aprendemos as probabilidades de determinados intervalos de valores. No segundo, aprendemos intervalos com uma probabilidade específica. Em ambos os algoritmos, utilizamos o conhecimento prévio de uma distribuição e ensinamos a outra. Neste artigo, vamos examinar um algoritmo que permite que o modelo aprenda ambas as distribuições.
preview
Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Continuamos a explorar algoritmos de aprendizado por reforço. Todos os algoritmos que analisamos até agora exigiam a criação de uma política de recompensa de tal forma que o agente pudesse avaliar cada uma de suas ações em cada transição de um estado do sistema para outro. No entanto, essa abordagem é bastante artificial. Na prática, existe um intervalo de tempo entre a ação e a recompensa. Neste artigo, proponho que você se familiarize com um algoritmo de aprendizado de modelo capaz de lidar com diferentes atrasos temporais entre a ação e a recompensa.
preview
Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.