Artigos sobre como programar e utilizar robôs de negociação na linguagem MQL5

icon

Os experts que os desenvolvedores criam para o MetaTrader realizam uma grande variedade de tarefas. Entre elas estão o monitoramento de muitos instrumentos financeiros 24h por dia, a cópia de operações, a criação e o envio de relatórios, a análise de notícias e até mesmo o acesso dos traders à sua própria interface gráfica personalizada.

Os artigos podem abordar técnicas de programação, ideias matemáticas para processamento de dados, dicas para criar e encomendar robôs de negociação.

Novo artigo
recentes | melhores
preview
Como Integrar o Conceito de Smart Money (BOS) Junto com o Indicador RSI em um EA

Como Integrar o Conceito de Smart Money (BOS) Junto com o Indicador RSI em um EA

Conceito de Smart Money (Break Of Structure) acoplado com o Indicador RSI para tomar decisões informadas de negociação automatizada com base na estrutura do mercado.
preview
Criando um Limitador de Drawdown Diário EA em MQL5

Criando um Limitador de Drawdown Diário EA em MQL5

O artigo discute, de forma detalhada, como implementar a criação de um Expert Advisor (EA) baseado no algoritmo de negociação. Isso ajuda a automatizar o sistema em MQL5 e a controlar o Drawdown Diário.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 27): Médias Móveis e o Ângulo de Ataque

Técnicas do MQL5 Wizard que você deve conhecer (Parte 27): Médias Móveis e o Ângulo de Ataque

O Ângulo de Ataque é uma métrica frequentemente citada, cuja inclinação é entendida como tendo uma forte correlação com a força de uma tendência predominante. Vamos analisar como ele é comumente usado e compreendido e examinar se há mudanças que poderiam ser introduzidas na forma como é medido, para benefício de um sistema de negociação que o utilize.
preview
Desenvolvendo um EA multimoeda (Parte 18): Automação da seleção de grupos considerando o período forward

Desenvolvendo um EA multimoeda (Parte 18): Automação da seleção de grupos considerando o período forward

Continuaremos automatizando etapas que anteriormente realizávamos manualmente. Desta vez, voltaremos à automação da segunda etapa, ou seja, a escolha do grupo ideal de instâncias individuais de estratégias de negociação, complementada pela capacidade de considerar os resultados dessas instâncias no período forward.
preview
Usando a API de Dados JSON em seus projetos MQL

Usando a API de Dados JSON em seus projetos MQL

Imagine que você pode usar dados que não estão disponíveis no MetaTrader, você só obtém dados de indicadores por análise de preços e análise técnica. Agora imagine que você pode acessar dados que levarão seu poder de negociação a um novo nível. Você pode multiplicar o poder do software MetaTrader se misturar a saída de outros softwares, métodos de análise macroeconômica e ferramentas ultra-avançadas por meio da API de dados. Neste artigo, vamos ensinar como usar APIs e apresentar serviços de dados API úteis e valiosos.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

O Exponente de Hurst é uma medida de quanto uma série temporal se autocorrela ao longo do tempo. Entende-se que ele captura as propriedades de longo prazo de uma série temporal e, portanto, tem um peso significativo na análise de séries temporais, mesmo fora do contexto econômico/financeiro. No entanto, focamos em seu potencial benefício para os traders ao analisar como essa métrica poderia ser combinada com médias móveis para construir um sinal potencialmente robusto.
preview
Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real

Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real

Atualmente, nosso EA utiliza um banco de dados para obter as strings de inicialização de instâncias individuais de estratégias de trading. No entanto, o banco de dados é bastante volumoso e contém muitas informações desnecessárias para a operação real do EA. Tentaremos garantir o funcionamento do EA sem a necessidade de conexão obrigatória ao banco de dados.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.
preview
Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes

Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes

O EA em desenvolvimento deve apresentar bons resultados ao operar com diferentes corretoras. Porém, até agora, os testes foram realizados com base em cotações de uma conta de demonstração da MetaQuotes. Vamos verificar se o EA está pronto para operar em contas reais com cotações diferentes das utilizadas durante os testes e otimizações.
preview
Teoria do caos no trading (Parte 1): Introdução, aplicação nos mercados financeiros e o indicador de Lyapunov

Teoria do caos no trading (Parte 1): Introdução, aplicação nos mercados financeiros e o indicador de Lyapunov

É possível aplicar a teoria do caos nos mercados financeiros? Vamos explorar nesta matéria como a teoria clássica do caos e os sistemas caóticos diferem do conceito proposto por Bill Williams.
preview
Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real

Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real

À medida que nos aproximamos de um EA pronto, é necessário prestar atenção em questões secundárias na etapa de teste da estratégia de trading, mas que se tornam importantes ao migrar para o trading real.
preview
Desenvolvendo um EA multimoeda (Parte 14): Alteração adaptativa dos volumes no gerenciador de risco

Desenvolvendo um EA multimoeda (Parte 14): Alteração adaptativa dos volumes no gerenciador de risco

O gerenciador de risco anteriormente desenvolvido continha apenas funcionalidades básicas. Vamos explorar caminhos para aprimorá-lo, buscando melhorar os resultados de negociação sem alterar a lógica das estratégias de trading.
preview
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 5): Sistema de Notificação (Parte III)

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 5): Sistema de Notificação (Parte III)

Esta parte da série de artigos é dedicada à integração do WhatsApp com o MetaTrader 5 para notificações. Incluímos um fluxograma para simplificar o entendimento e discutiremos a importância das medidas de segurança na integração. O principal objetivo dos indicadores é simplificar a análise por meio da automação, e eles devem incluir métodos de notificação para alertar os usuários quando condições específicas forem atendidas. Descubra mais neste artigo.
preview
Data Science e Machine Learning (Parte 25): Previsão de Séries Temporais de Forex Usando uma Rede Neural Recorrente (RNN)

Data Science e Machine Learning (Parte 25): Previsão de Séries Temporais de Forex Usando uma Rede Neural Recorrente (RNN)

Redes neurais recorrentes (RNNs) se destacam em utilizar informações passadas para prever eventos futuros. Suas notáveis capacidades preditivas foram aplicadas em diversos domínios com grande sucesso. Neste artigo, implementaremos modelos de RNN para prever tendências no mercado de forex, demonstrando seu potencial para aumentar a precisão das previsões no trading de forex.
preview
Redes neurais em trading: Representação linear por partes de séries temporais

Redes neurais em trading: Representação linear por partes de séries temporais

Este artigo é um pouco diferente dos trabalhos anteriores desta série. Nele, discutiremos uma representação alternativa de séries temporais. A representação linear por partes de séries temporais é um método de aproximação de séries temporais usando funções lineares em pequenos intervalos.
preview
Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Ao estudar diferentes arquiteturas de construção de modelos, temos dado pouca atenção ao processo de treinamento dos modelos. Neste artigo, tentarei preencher essa lacuna.
preview
Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)

Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)

A extração e integração eficazes de dependências de longo prazo e características de curto prazo continuam sendo uma tarefa importante na análise de séries temporais. Compreendê-las e integrá-las corretamente é necessário para criar modelos preditivos precisos e confiáveis.
preview
Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer

Redes neurais de maneira fácil (Parte 95): Redução do consumo de memória em modelos Transformer

Os modelos baseados na arquitetura Transformer demonstram alta eficiência, mas seu uso é dificultado pelos altos custos de recursos, tanto na fase de treinamento quanto durante a utilização prática. Neste artigo, proponho conhecer algoritmos que permitem reduzir o uso de memória por esses modelos.
preview
Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)

Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)

Ao estudarmos o método FEDformer, abrimos uma porta para a área de representação de séries temporais no domínio da frequência. No novo artigo, continuaremos o tema iniciado, e analisaremos um método que permite não apenas conduzir uma análise, mas também prever estados futuros no domínio frequencial.
preview
Gerenciador de riscos para trading algorítmico

Gerenciador de riscos para trading algorítmico

Os objetivos deste artigo são: demonstrar a necessidade obrigatória de um gerenciador de riscos, adaptar os princípios de controle de risco para trading algorítmico em uma classe específica, permitindo que todos possam comprovar, de forma independente, a eficácia da abordagem de normalização de risco no day trading e em investimentos nos mercados financeiros. Neste artigo, exploraremos em detalhes a criação de uma classe de gerenciador de riscos para trading algorítmico, continuando o tópico abordado no artigo anterior sobre o gerenciador de riscos para trading manual.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Médias Móveis são um indicador muito comum, usado e compreendido pela maioria dos traders. Exploramos possíveis casos de uso que podem não ser tão comuns dentro dos Expert Advisors montados no MQL5 Wizard.
preview
Construção de um modelo de restrição de tendência de velas (Parte 1): Para EAs e indicadores técnicos

Construção de um modelo de restrição de tendência de velas (Parte 1): Para EAs e indicadores técnicos

Este artigo é voltado para desenvolvedores iniciantes e experientes em MQL5. Ele oferece um código que define indicadores para gerar sinais, limitando-os com base nas tendências de timeframes mais altos. Dessa forma, traders podem aprimorar suas estratégias ao incluir uma visão mais ampla do mercado, o que pode resultar em sinais de negociação potencialmente mais confiáveis.
preview
Otimização Automatizada de Parâmetros para Estratégias de Trading Usando Python e MQL5

Otimização Automatizada de Parâmetros para Estratégias de Trading Usando Python e MQL5

Existem vários tipos de algoritmos para auto-otimização de estratégias de trading e parâmetros. Esses algoritmos são usados para melhorar automaticamente as estratégias de trading com base em dados históricos e atuais de mercado. Neste artigo, veremos um desses algoritmos com exemplos em Python e MQL5.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 5): Sistema de Notificação (Parte II)

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 5): Sistema de Notificação (Parte II)

Hoje, estamos discutindo uma integração funcional do Telegram para notificações do Indicador MetaTrader 5 usando o poder do MQL5, em parceria com Python e a API do Bot do Telegram. Explicaremos tudo em detalhes para que ninguém perca nenhum ponto. Ao final deste projeto, você terá adquirido conhecimentos valiosos para aplicar em seus projetos.
preview
Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Um guia abrangente para desenvolver um algoritmo de negociação automatizado baseado na estratégia de Suporte e Resistência. Informações detalhadas sobre todos os aspectos da criação de um expert advisor em MQL5 e testá-lo no MetaTrader 5 – desde a análise dos comportamentos de faixa de preço até o gerenciamento de risco.
preview
Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais

Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais

Ao trabalhar com séries temporais, geralmente usamos os dados na sequência histórica. Mas isso é realmente o mais eficiente? Há quem acredite que modificar a sequência dos dados iniciais pode aumentar a eficácia dos modelos de aprendizado. Neste artigo, vou apresentar um desses métodos.
preview
Desenvolvendo um EA Multimoeda (Parte 13): Automação da segunda etapa — Seleção de grupos

Desenvolvendo um EA Multimoeda (Parte 13): Automação da segunda etapa — Seleção de grupos

A primeira etapa do processo automatizado de otimização já foi implementada. Para diferentes símbolos e timeframes, realizamos a otimização com base em vários critérios e armazenamos as informações dos resultados de cada execução em um banco de dados. Agora, vamos nos dedicar à seleção dos melhores grupos de conjuntos de parâmetros encontrados na primeira etapa.
preview
Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 5): Sistema de Notificação (Parte I)

Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 5): Sistema de Notificação (Parte I)

Dividiremos o código principal do MQL5 em trechos específicos para ilustrar a integração do Telegram e WhatsApp para receber notificações de sinais do indicador de Restrição de Tendência que estamos criando nesta série de artigos. Isso ajudará traders, tanto iniciantes quanto desenvolvedores experientes, a compreender o conceito com mais facilidade. Primeiro, abordaremos a configuração do MetaTrader 5 para notificações e sua importância para o usuário. Isso ajudará os desenvolvedores a tomarem nota antecipadamente para aplicar posteriormente em seus sistemas.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs

Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs

As Redes Neurais Convolucionais são outro algoritmo de aprendizado de máquina que tende a se especializar em decompor conjuntos de dados multidimensionais em partes constituintes principais. Vamos ver como isso é normalmente alcançado e explorar uma possível aplicação para traders em outra classe de sinais do MQL5 Wizard.
preview
Desenvolvendo uma estratégia Martingale de Recuperação de Zona em MQL5

Desenvolvendo uma estratégia Martingale de Recuperação de Zona em MQL5

O artigo discute, de forma detalhada, os passos que precisam ser implementados para a criação de um advisor especializado baseado no algoritmo de negociação de Recuperação de Zona. Isso ajuda a automatizar o sistema, economizando tempo para os negociadores algorítmicos.
preview
MQL5 Trading Toolkit (Parte 1): Desenvolvendo uma Biblioteca EX5 para Gerenciamento de Posições

MQL5 Trading Toolkit (Parte 1): Desenvolvendo uma Biblioteca EX5 para Gerenciamento de Posições

Aprenda a criar um kit de ferramentas para desenvolvedores para gerenciar várias operações de posição com MQL5. Neste artigo, vou demonstrar como criar uma biblioteca de funções (ex5) que realizará operações de gerenciamento de posições, de simples a avançadas, incluindo o tratamento automático e a geração de relatórios dos diferentes erros que surgem ao lidar com tarefas de gerenciamento de posições com MQL5.
preview
Um Guia Passo a Passo sobre a Estratégia de Quebra de Estrutura (BoS)

Um Guia Passo a Passo sobre a Estratégia de Quebra de Estrutura (BoS)

Um guia abrangente para desenvolver um algoritmo de negociação automatizado baseado na estratégia de Quebra de Estrutura (BoS). Informações detalhadas sobre todos os aspectos da criação de um consultor em MQL5 e testando-o no MetaTrader 5 — desde a análise de suporte e resistência de preços até a gestão de riscos.
preview
Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)

Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)

Neste artigo, continuamos a implementação das abordagens do ATFNet — um modelo que adapta e combina os resultados de 2 blocos (frequencial e temporal) de previsão de séries temporais.
preview
Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo

Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo

Os autores do método FreDF confirmaram experimentalmente a vantagem da previsão combinada nas áreas de frequência e tempo. No entanto, o uso de um hiperparâmetro de ponderação não é ideal para séries temporais não estacionárias. Neste artigo, proponho que você conheça um método de combinação adaptativa de previsões nas áreas de frequência e tempo.
preview
Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

No EA em desenvolvimento, já temos um mecanismo de controle de rebaixamento implementado. No entanto, ele tem uma natureza probabilística, pois se baseia nos resultados de testes com dados históricos de preços. Assim, o rebaixamento, embora com pequena probabilidade, às vezes pode exceder os valores máximos esperados. Vamos tentar adicionar um mecanismo que garanta a manutenção de um nível de rebaixamento predefinido.
preview
Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)

Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)

Continuamos a explorar a análise e previsão de séries temporais na área de frequência. E nesta matéria, apresentaremos um novo método de previsão nessa área, que pode ser adicionado a muitos dos algoritmos que já estudamos anteriormente.
preview
Desenvolvendo um EA multimoeda (Parte 11): Início da automação do processo de otimização

Desenvolvendo um EA multimoeda (Parte 11): Início da automação do processo de otimização

Para obter um bom EA, precisamos selecionar muitos bons conjuntos de parâmetros para as instâncias das estratégias de trading. Isso pode ser feito manualmente, executando a otimização em diferentes símbolos e, em seguida, escolhendo os melhores resultados. Mas é melhor delegar esse trabalho para um programa e se concentrar em atividades mais produtivas.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 22): GANs Condicionais

Técnicas do MQL5 Wizard que você deve conhecer (Parte 22): GANs Condicionais

Redes Generativas Adversariais são uma combinação de Redes Neurais que treinam entre si para obter resultados mais precisos. Adotamos o tipo condicional dessas redes ao buscarmos uma possível aplicação na previsão de séries temporais financeiras dentro de uma Classe de Sinais de Expert.
preview
Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Você sabia que podemos obter mais precisão ao prever certos indicadores técnicos do que ao prever o preço subjacente de um símbolo negociado? Junte-se a nós para explorar como aproveitar essa percepção para melhores estratégias de negociação
preview
Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Com o rápido desenvolvimento da inteligência artificial hoje em dia, os modelos de linguagem (LLMs) são uma parte importante da IA, então devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e depois aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.