Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)
Continuamos nosso experimento que visa examinar o comportamento dos algoritmos de otimização de população no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade da população é baixa e alcançar máximos globais. Os resultados da pesquisa são fornecidos.
Modelos polinomiais no trading
Este artigo é dedicado aos polinômios ortogonais. Seu uso pode se tornar a base para uma análise mais precisa e eficaz das informações do mercado, permitindo que o trader tome decisões mais fundamentadas.
Simulação de mercado (Parte 05): Iniciando a classe C_Orders (II)
Neste artigo, explicarei como o Chart Trade conseguirá lidar, junto com o Expert Advisor, a um pedido do usuário para encerrar todas as posições que se encontram em aberto. Parece ser algo simples. Porém existem alguns agravantes que você precisa saber como lidar com eles.
Simulação de mercado: Position View (VII)
Neste artigo, começaremos a fazer algumas melhorias no indicador de posição. Isto para que seja possível interagir com ele. E modificar as linhas de preço, ou fechar uma posição diretamente via interação com o indicador de posição. Antes de realmente começarmos a parte da implementação. Vamos entender uma coisa aqui. Isto para os menos avisados. Não é possível, de maneira ou forma alguma, usar um indicador a fim de modificar algo no servidor de negociação. Isto por conta que o MetaTrader 5, conta com um sistema de segurança que permite apenas e somente aos Expert Advisores, fazerem algo em uma ordem ou posição. Nenhuma outra aplicação que não seja um Expert Advisor, conseguirá manipular ordens ou posições.
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 8): Desenvolvimento do Expert Advisor (II)
Pense em um Expert Advisor independente. Anteriormente, discutimos um Expert Advisor baseado em indicador que também contava com um script independente para desenhar a geometria de risco e recompensa. Hoje, discutiremos a arquitetura de um Expert Advisor em MQL5, que integra todos os recursos em um único programa.
Do básico ao intermediário: Estruturas (V)
Neste artigo veremos como é feita a sobrecarga de um código estrutural. Sei que isto, é um tanto quanto difícil de entender no começo. Principalmente se você está vendo isto pela primeira vez. Porém, é muito importante que você procure assimilar estes conceitos e entender muito bem o que se passa aqui, antes de procurar se aventurar em coisas ainda mais complicadas e elaboradas.
Redes neurais em trading: Transformer contrativo de padrões (Conclusão)
No último artigo da série, analisamos o framework Atom-Motif Contrastive Transformer (AMCT), que utiliza aprendizado contrastivo para identificar padrões-chave em todos os níveis, desde os elementos básicos até estruturas complexas. Neste artigo, continuamos a implementar as abordagens do AMCT com recursos do MQL5.
Redes neurais em trading: Representação adaptativa de grafos (NAFS)
Apresentamos o método NAFS (Node-Adaptive Feature Smoothing), uma abordagem não paramétrica para criar representações de nós que não requer o treinamento de parâmetros. O NAFS extrai as características de cada nó considerando seus vizinhos e, então, combina essas características de forma adaptativa para formar a representação final.
Algoritmo de otimização de migração animal (AMO)
O artigo é dedicado ao algoritmo AMO, que modela o processo de migração sazonal dos animais em busca de condições ideais para sobrevivência e reprodução. As principais características do AMO incluem o uso da vizinhança topológica e um mecanismo probabilístico de atualização, tornando-o simples de implementar e flexível para diversas tarefas de otimização.
Sistemas neurossimbólicos no algotrading: Unindo regras simbólicas e redes neurais
Este artigo fala sobre a experiência de desenvolver um sistema de negociação híbrido que combina análise técnica clássica com redes neurais. O autor destrincha a arquitetura do sistema, desde a análise básica de padrões e estrutura da rede neural até os mecanismos de tomada de decisão, compartilhando código real e observações práticas.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 50): Awesome Oscillator
O Awesome Oscillator é outro indicador de Bill Williams que é usado para medir o momentum. Ele pode gerar múltiplos sinais e, portanto, revisamos estes com base em padrões, como em artigos anteriores, aproveitando as classes e a montagem do MQL5 wizard.
Arbitragem Forex: painel de avaliação de correlações
Vamos analisar a criação de um painel de arbitragem na linguagem MQL5. Como obter taxas de câmbio justas no Forex de diferentes maneiras? Criaremos um indicador para medir os desvios dos preços de mercado em relação às taxas justas, bem como para avaliar o potencial de lucro em rotas de arbitragem entre moedas (como na arbitragem triangular).
Simulação de mercado: Position View (IX)
Neste artigo, que será um artigo divisor de águas. Vamos começar a explorar de maneira um pouco mais profunda a interação entre as aplicações que estão sendo desenvolvidas para dar suporte total ao sistema de replay/simulação. Aqui vamos analisar um problema. Este tem de um lado, algo bastante chato, mas de outro algo muito interessante de explicar como resolver. E o problema é: Como fazer para adicionar as linhas de take profit e stop loss, depois que elas foram removidas? Isto sem usar o terminal, mas sim fazendo a operação direto no gráfico. Bem isto de fato é algo, a primeira vista simples. Porém existem alguns percalços a serem superados.
Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)
Continuação do artigo anterior como desenvolvimento da ideia de grupos sociais. No novo artigo, explora-se a evolução dos grupos sociais utilizando algoritmos de movimentação e memória. Os resultados ajudarão a entender a evolução dos sistemas sociais e aplicá-los na otimização e busca de soluções.
Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos
Neste artigo, exploramos como integrar comandos do Telegram com MQL5 para automatizar a adição de indicadores em gráficos de negociação. Cobrimos o processo de análise (parsing) dos comandos dos usuários, sua execução no MQL5 e o teste do sistema para garantir uma negociação baseada em indicadores de forma fluida.
Do básico ao intermediário: Eventos de mouse
Este artigo, é uns dos que definitivamente, é necessário não apenas ver o código e o estudar para compreender o que estará acontecendo. É de fato, necessário, criar uma aplicação executável e a utilizar em um gráfico qualquer. Isto maneira a conseguir entender pequenos detalhes, que de outra forma são muito complicados de serem compreendidos. Como por exemplo, a combinação de teclado com o mouse, a fim de construir certos tipos de coisas.
Análise angular dos movimentos de preço: um modelo híbrido de previsão dos mercados financeiros
O que é análise angular dos mercados financeiros? Como usar os ângulos de movimento de preço e o aprendizado de máquina para prever com precisão de 67? Como combinar um modelo de regressão e um modelo de classificação com características angulares e obter um algoritmo funcional? O que Gann tem a ver com isso? Por que os ângulos de movimento do preço são bons indicadores para o aprendizado de máquina?
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases
Este artigo dá continuidade ao tema do comportamento social dos organismos vivos e ao seu impacto no desenvolvimento de um novo modelo matemático, o ASBO (Adaptive Social Behavior Optimization). Exploraremos a evolução em duas fases, realizaremos testes no algoritmo e apresentaremos as conclusões. Assim como na natureza, onde grupos de organismos vivos se unem para sobreviver, o ASBO utiliza princípios de comportamento coletivo para resolver problemas complexos de otimização.
Métodos de William Gann (Parte III): A astrologia funciona?
A posição dos planetas e estrelas influencia os mercados financeiros? Vamos recorrer à estatística e aos big data para embarcar em uma jornada fascinante pelo mundo onde as estrelas e os gráficos do mercado se cruzam.
Seleção de características passo a passo em MQL5
Neste artigo, apresentamos uma versão modificada da seleção de características passo a passo, implementada em MQL5. Essa abordagem é baseada nas técnicas descritas em Modern Data Mining Algorithms in C++ and CUDA C de Timothy Masters.
Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)
No próximo artigo, conheceremos o algoritmo Anarchic Society Optimization (ASO) e discutiremos como um algoritmo baseado no comportamento irracional e aventureiro dos participantes de uma sociedade anárquica — um sistema anômalo de interação social, livre de autoridade centralizada e de qualquer tipo de hierarquia — é capaz de explorar o espaço de soluções e evitar armadilhas de ótimos locais. O artigo apresentará uma estrutura unificada do ASO, aplicável tanto a problemas contínuos quanto a problemas discretos.
Do básico ao intermediário: Objetos (IV)
Este talvez venha a ser o artigo mais divertido até este momento. Isto porque, aqui iremos implementar uma modificação de um objeto presente no MetaTrader 5, a fim de conseguir criar um outro objeto, que não existe originalmente na plataforma. Claro que o que será visto aqui, pode parecer meio que doideira. Mas funciona e tem um objetivo bastante interessante.
Redes neurais em trading: Segmentação guiada (Conclusão)
Damos continuidade ao trabalho iniciado no artigo anterior sobre a construção do framework RefMask3D utilizando MQL5. Esse framework foi desenvolvido para um estudo aprofundado da interação multimodal e da análise de características em nuvens de pontos, com posterior identificação do objeto-alvo com base em uma descrição fornecida em linguagem natural.
Ganhe uma Vantagem Sobre Qualquer Mercado (Parte III): Índice de Gastos com Cartões Visa
No mundo dos big data, existem milhões de conjuntos de dados alternativos que têm o potencial de aprimorar nossas estratégias de negociação. Nesta série de artigos, vamos ajudá-lo a identificar os conjuntos de dados públicos mais informativos.
Algoritmo de Irrigação Artificial — Artificial Showering Algorithm (ASHA)
Este artigo apresenta o Algoritmo de Irrigação Artificial (ASHA), um novo método metaheurístico desenvolvido para resolver problemas gerais de otimização. Baseado na simulação dos processos de fluxo e acúmulo de água, este algoritmo constrói o conceito de um campo ideal, no qual cada unidade de recurso (água) é convocada para buscar a solução ótima. Descubra como o ASHA adapta os princípios de fluxo e acúmulo para distribuir recursos de forma eficiente em um espaço de busca e conheça sua implementação e os resultados dos testes.
Do básico ao intermediário: Acesso aleatório (I)
Neste artigo teremos a nossa primeira experiência no que se refere ao acesso aleatório ao conteúdo de um arquivo. Isto visando tanto a escrita quanto também a leitura de informações e dados presentes em um arquivo. No entanto, como este tema é um tanto quanto longo para ser explicado em um único artigo. Aqui iremos apenas fazer uma introdução sobre esta questão do acesso aleatório.
Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica
Neste artigo, analisaremos como aprimorar e aplicar de forma mais eficiente os conceitos apresentados no artigo anterior, utilizando as poderosas bibliotecas de elementos gráficos de controle do MQL5. Conduzirei você passo a passo pelo processo de criação de uma interface gráfica totalmente funcional, explicando o plano de projeto subjacente, bem como o propósito e o princípio de funcionamento de cada método empregado. Além disso, ao final do artigo testaremos o painel criado, a fim de confirmar seu correto funcionamento e sua aderência aos objetivos estabelecidos.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs
As Redes Neurais Convolucionais são outro algoritmo de aprendizado de máquina que tende a se especializar em decompor conjuntos de dados multidimensionais em partes constituintes principais. Vamos ver como isso é normalmente alcançado e explorar uma possível aplicação para traders em outra classe de sinais do MQL5 Wizard.
De Iniciante a Especialista: Depuração Colaborativa em MQL5
A resolução de problemas pode estabelecer uma rotina concisa para dominar habilidades complexas, como programar em MQL5. Essa abordagem permite que você se concentre na resolução de problemas enquanto desenvolve suas habilidades ao mesmo tempo. Quanto mais problemas você resolver, mais conhecimento avançado será transferido para o seu cérebro. Pessoalmente, acredito que a depuração é a forma mais eficaz de dominar a programação. Hoje, vamos percorrer o processo de limpeza de código e discutir as melhores técnicas para transformar um programa desorganizado em um funcional e limpo. Leia este artigo e descubra insights valiosos.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 49): Aprendizado por reforço e otimização proximal de política
A otimização proximal de política (Proximal Policy Optimization) é mais um algoritmo de aprendizado por reforço, que atualiza a política, muitas vezes em forma de rede, em passos muito pequenos para garantir a estabilidade do modelo. Como de costume, vamos analisar como esse algoritmo pode ser aplicado em um EA construído com a ajuda do Assistente.
Algoritmo de otimização baseado em ecossistema artificial — Artificial Ecosystem-based Optimization (AEO)
O artigo aborda o algoritmo metaheurístico AEO, que modela as interações entre os componentes de um ecossistema, criando uma população inicial de soluções e aplicando estratégias adaptativas de atualização, e descreve detalhadamente as etapas do funcionamento do AEO, incluindo as fases de consumo e decomposição, bem como as diferentes estratégias de comportamento dos agentes. O artigo apresenta as características e vantagens do AEO.
Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)
No artigo anterior, exploramos os fundamentos teóricos e começamos a implementar as abordagens do framework Multitask-Stockformer, que combina wavelet transform e o modelo multitarefa Self-Attention. Damos continuidade à implementação dos algoritmos desse framework e avaliamos sua eficácia com dados históricos reais.
Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)
Apresentamos o framework do agente multimodal para negociação financeira FinAgent, projetado para analisar dados de diferentes tipos que refletem a dinâmica do mercado e padrões históricos de negociação.
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 9): Fluxo Externo
Este artigo explora uma nova dimensão de análise utilizando bibliotecas externas especificamente projetadas para análises avançadas. Essas bibliotecas, como o pandas, fornecem ferramentas poderosas para processar e interpretar dados complexos, permitindo que os traders obtenham percepções mais profundas sobre a dinâmica do mercado. Ao integrar essas tecnologias, podemos reduzir a lacuna entre dados brutos e estratégias acionáveis. Junte-se a nós enquanto estabelecemos as bases dessa abordagem inovadora e desbloqueamos o potencial de combinar tecnologia com expertise em trading.
Arbitragem no trading Forex: Análise dos movimentos de moedas sintéticas e seu retorno à média
Neste artigo, tentaremos analisar os movimentos das moedas sintéticas na integração Python + MQL5 e entender até que ponto a arbitragem ainda é viável no Forex atualmente. Além disso: apresentaremos um código pronto em Python para análise de moedas sintéticas e explicaremos em detalhes o que são essas moedas no mercado Forex.
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 1): Projetor de Gráficos
Este projeto tem como objetivo aproveitar o algoritmo MQL5 para desenvolver um conjunto abrangente de ferramentas de análise para o MetaTrader 5. Essas ferramentas — que vão desde scripts e indicadores até modelos de IA e expert advisors — irão automatizar o processo de análise de mercado. Em alguns momentos, esse desenvolvimento gerará ferramentas capazes de realizar análises avançadas sem intervenção humana e prever resultados em plataformas apropriadas. Nenhuma oportunidade será perdida. Junte-se a mim enquanto exploramos o processo de construção de um conjunto robusto de ferramentas personalizadas de análise de mercado. Começaremos desenvolvendo um programa simples em MQL5 que chamei de Projetor de Gráficos.
Reimaginando Estratégias Clássicas (Parte 12): Estratégia de Breakout EURUSD
Junte-se a nós hoje enquanto nos desafiamos a construir uma estratégia de negociação de rompimento lucrativa em MQL5. Selecionamos o par EURUSD e tentamos negociar rompimentos de preço no período de uma hora. Nosso sistema teve dificuldade em distinguir entre falsos rompimentos e o início de tendências reais. Camadas de filtros foram adicionadas ao sistema para minimizar perdas e aumentar ganhos. No final, conseguimos tornar nosso sistema lucrativo e menos propenso a falsos rompimentos.
Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)
Apresentamos o framework FinCon, que é um sistema multiagente baseado em grandes modelos de linguagem (LLM). O framework utiliza reforço verbal conceitual para melhorar a tomada de decisões e o gerenciamento de riscos, permitindo realizar diversas tarefas financeiras de forma eficiente.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)
O artigo analisa a implementação prática do framework HiSSD em tarefas de trading algorítmico. É mostrado como a hierarquia de habilidades e a arquitetura adaptativa podem ser utilizadas para desenvolver estratégias de negociação robustas.
Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)
Este artigo apresenta o Algoritmo do Campo Elétrico Artificial (AEFA), inspirado na lei de Coulomb da força eletrostática. Por meio de partículas carregadas e suas interações, o algoritmo simula fenômenos elétricos para resolver tarefas complexas de otimização. O AEFA demonstra propriedades únicas em relação a outros algoritmos baseados em leis da natureza.