Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)
Apresento a vocês meu novo algoritmo populacional de otimização BIO (Blood Inheritance Optimization), inspirado no sistema de herança dos tipos sanguíneos humanos. Neste algoritmo, cada solução possui seu próprio "tipo sanguíneo", que define a forma de sua evolução. Assim como na natureza, o tipo sanguíneo de uma criança é herdado segundo regras específicas, no BIO as novas soluções recebem suas características através de um sistema de herança e mutações.
Visualização de estratégias em MQL5: distribuindo os resultados da otimização em gráficos de critérios
Neste artigo, escreveremos um exemplo de visualização do processo de otimização e exibiremos os três melhores passes para quatro critérios de otimização. Além disso, implementaremos a possibilidade de selecionar um dos três melhores passes para exibir seus dados em tabelas e no gráfico.
Ondas triangulares e em forma de serra: ferramentas para o trader
Um dos métodos de análise técnica é a análise de ondas. Neste artigo, vamos examinar ondas de um tipo um pouco incomum, nomeadamente as triangulares e as em forma de serra. Com base nessas ondas, é possível construir vários indicadores técnicos que permitem analisar o movimento do preço no mercado.
Automatização de estratégias de trading com MQL5 (Parte 13): Criação de um algoritmo de negociação para o padrão "Cabeça e Ombros"
Neste artigo, automatizaremos o padrão "Cabeça e Ombros" em MQL5. Analisaremos sua arquitetura, implementaremos um EA para sua detecção e negociação, e testaremos os resultados no histórico. Esse processo revela um algoritmo de negociação prático, que pode ser aprimorado.
Do básico ao intermediário: Classes (I)
Neste artigo, começaremos a ver o que seria de fato uma classe, e por que elas foram criadas. Apesar deste ser um assunto bastante interessante, aqui iremos focar, nas questões relacionadas ao que rege e tange a programação em MQL5. Sendo este artigo, apenas uma introdução ao assunto.
Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)
Damos continuidade à implementação dos algoritmos do agente multimodal para negociação financeira, o FinAgent, desenvolvido para análise de dados multimodais da dinâmica de mercado e de padrões históricos de trading.
Desenvolvendo um EA multimoeda (Parte 23): Colocando em ordem o pipeline de etapas da otimização automática de projetos (II)
Estamos buscando criar um sistema de otimização periódica e automática das estratégias de trading utilizadas em um único EA final. À medida que o sistema evolui, ele se torna mais complexo, sendo necessário, periodicamente, analisá-lo como um todo para identificar gargalos e soluções pouco eficientes.
Otimização com Jogo do Caos — Chaos Game Optimization (CGO)
Apresentamos o novo algoritmo meta-heurístico Chaos Game Optimization (CGO), que demonstra capacidade única de manter alta eficiência em tarefas de grande dimensionalidade. Ao contrário da maioria dos algoritmos de otimização, o CGO não apenas não perde desempenho, como também às vezes melhora sua performance quando a complexidade do problema aumenta, o que constitui sua principal característica.
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)
Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.
Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)
Inspirado no jogo clássico de bilhar, o método BOA modela o processo de busca por soluções ótimas como uma partida em que as bolas tentam cair nas caçapas, que simbolizam os melhores resultados. Neste artigo, analisaremos os fundamentos do funcionamento do BOA, seu modelo matemático e sua eficácia na resolução de diferentes problemas de otimização.
Algoritmo do Restaurateur de Sucesso — Successful Restaurateur Algorithm (SRA)
O Algoritmo do Restaurateur de Sucesso (SRA) é um método inovador de otimização inspirado nos princípios de gestão de um restaurante. Ao contrário das abordagens tradicionais, o SRA não descarta as soluções mais fracas, mas as melhora, combinando-as com elementos das soluções de maior sucesso. O algoritmo apresenta resultados competitivos e traz uma nova perspectiva sobre como equilibrar a diversificação e a intensificação em problemas de otimização.
Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples
Sistema de previsão do EURUSD usando visão computacional e aprendizado profundo. Descubra como redes neurais convolucionais podem reconhecer padrões complexos de preços no mercado cambial e prever o movimento da cotação com precisão de até 54%. O artigo revela a metodologia de criação de um algoritmo que utiliza tecnologias de inteligência artificial para análise visual de gráficos, em vez de indicadores técnicos tradicionais. O autor demonstra o processo de transformação dos dados de preços em "imagens", seu processamento por uma rede neural e a oportunidade única de olhar para a "consciência" da IA por meio de mapas de ativação e mapas de calor de atenção. O código prático em Python, com a utilização da biblioteca MetaTrader 5, possibilita que os leitores reproduzam o sistema e o apliquem em seu próprio trading.
Redes neurais em trading: Segmentação de dados com base em expressões de referência
Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.
Criação de um painel de administração de trading no MQL5 (Parte IV): Segurança no login
Imagine que um invasor tenha conseguido entrar no sistema de gerenciamento de trading e obtido acesso aos computadores e ao painel de administração usados para transmitir informações valiosas a milhões de traders em todo o mundo. Isso pode resultar em consequências catastróficas, como o envio não autorizado de mensagens enganosas ou cliques acidentais em botões que disparam ações indesejadas. Neste artigo, analisaremos as medidas de segurança do MQL5 e os novos recursos de proteção implementados em nosso painel de administração para evitar tais ameaças. Ao aprimorar nossos protocolos de segurança, buscamos proteger nossos canais de comunicação e manter a confiança dos membros de nossa comunidade de trading.
Do básico ao intermediário: Eventos em Objetos (IV)
Neste artigo iremos terminar o que foi começado no artigo anterior. Ou seja, uma forma total e completamente interativa de redimensionar os objetos diretamente no gráfico. Apesar do fato de muitos imaginarem que para fazer tal coisa, seria necessário muito mais conhecimento sobre MQL5. Você irá notar que usando conceitos simples e um conhecimento muito básico, podemos implementar uma forma de trabalhar com os objetos diretamente no gráfico. Algo que terá um resultado bem divertido e bastante interessante.
Introdução ao MQL5 (Parte 10): Um Guia para Iniciantes sobre como Trabalhar com Indicadores Embutidos no MQL5
Este artigo introduz o trabalho com indicadores embutidos no MQL5, com foco na criação de um Expert Advisor (EA) baseado em RSI usando uma abordagem orientada a projeto. Você aprenderá a recuperar e utilizar valores de RSI, lidar com varreduras de liquidez e aprimorar a visualização de trades usando objetos no gráfico. Além disso, o artigo enfatiza a gestão eficaz de risco, incluindo a definição de risco baseado em porcentagem, implementação de relações risco-retorno e aplicação de modificações de risco para garantir lucros.
Do básico ao intermediário: Filas, Listas e Árvores (VI)
Neste artigo iremos retomar a implementação do que seria uma árvore. Agora que temos os conceitos básicos sobre como um constructor e destructor funcionam. Poderemos finalmente corrigir o código visto no último artigo. Mas se prepare para uma verdadeira aventura dentro da programação MQL5.
Redes neurais em trading: Modelos de espaço de estados
A base de muitos dos modelos que examinamos anteriormente é a arquitetura Transformer. No entanto, eles podem ser ineficientes ao lidar com sequências longas. Neste artigo, proponho uma abordagem alternativa de previsão de séries temporais com base em modelos de espaço de estados.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 42): Oscilador ADX
ADX é outro indicador técnico relativamente popular, usado por alguns traders para avaliar a força da tendência predominante. Atuando como uma combinação de dois outros indicadores, ele é um oscilador cujos padrões vamos explorar neste artigo com a ajuda do Assistente MQL5 e suas classes auxiliares.
Técnicas do Assistente MQL5 que você deve conhecer (Parte 46): Ichimoku
O Ichimuko Kinko Hyo é um renomado indicador japonês que serve como um sistema de identificação de tendência. Examinamos isso, padrão por padrão, como foi o caso em artigos semelhantes anteriores, e também avaliamos suas estratégias e relatórios de teste com a ajuda das classes e montagem da biblioteca wizard do MQL5.
Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT
Seguimos com as tentativas de decifrar os movimentos dos preços... Que tal uma análise linguística do "vocabulário do mercado", que obtemos ao converter o código binário do preço para BIP39? Neste artigo, vamos nos aprofundar em uma abordagem inovadora para a análise de dados de mercado e explorar como os métodos modernos de processamento de linguagem natural podem ser aplicados ao idioma do mercado.
Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)
O Attraos é um framework que integra a teoria do caos à previsão de séries temporais de longo prazo, tratando-as como projeções de sistemas dinâmicos caóticos multidimensionais. Por meio da invariância do atrator, o modelo aplica a reconstrução do espaço de fases e a memória dinâmica com múltiplas resoluções para preservar estruturas históricas.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 45): Aprendizado por Reforço com Monte-Carlo
Monte-Carlo é o quarto algoritmo diferente em aprendizado por reforço que estamos considerando com o objetivo de explorar sua implementação em Expert Advisors montados pelo wizard. Embora ancorado em amostragem aleatória, ele apresenta vastas formas de simulação que podemos explorar.
Do básico ao intermediário: FileSave e FileLoad
Neste artigo será explicado e explorado algumas formas de lidar com as funções de biblioteca FileSave e FileLoad. Apesar de muita gente, as considerar pouco promissoras, devido a algumas limitações ou dificuldades que as mesmas nos gera em alguns tipos de cenários. Entender da forma correta como estas duas funções trabalham, podem lhe poupar muito trabalho em certos momento. Além é claro, das mesmas, serem uma ótima forma de promover arquivos de log.
Análise da influência do clima nas moedas de países agrícolas usando Python
Como o clima está relacionado ao mercado cambial? Na teoria econômica clássica, por muito tempo não se reconheceu a influência de fatores como o clima no comportamento do mercado. Porém, tudo mudou. Vamos tentar estabelecer conexões entre o estado do tempo e a situação das moedas agrícolas no mercado.
Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)
Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.
Redes neurais em trading: Modelo hiperbólico de difusão latente (Conclusão)
A aplicação de processos de difusão anisotrópicos para codificação dos dados brutos no espaço latente hiperbólico, conforme proposto no framework HypDiff, contribui para a preservação das características topológicas da situação atual do mercado e melhora a qualidade de sua análise. No artigo anterior, iniciamos a implementação das abordagens propostas usando MQL5. Hoje, continuaremos esse trabalho iniciado, levando-o até sua conclusão lógica.
Do básico ao intermediário: Eventos em Objetos (III)
Neste artigo iremos preparar o terreno para algo que será visto no próximo artigo. Mas também iremos ver como permitir que um objeto do tipo OBJ_LABEL possa ser editado e movido de forma completamente interativa. Ou seja, poderemos mudar tanto o texto quanto a posição de um objeto do tipo OBJ_LABEL, sem abrir a janela de propriedades do objeto.
Algoritmo de Partenogênese Cíclica — Cyclic Parthenogenesis Algorithm (CPA)
Neste artigo, vamos analisar um novo algoritmo populacional de otimização, o CPA (Cyclic Parthenogenesis Algorithm), inspirado na estratégia reprodutiva única dos pulgões. O algoritmo combina dois mecanismos de reprodução — partenogênese e sexual — e utiliza uma estrutura de colônia populacional com possibilidade de migração entre colônias. As principais características do algoritmo são a alternância adaptativa entre diferentes estratégias reprodutivas e o sistema de troca de informação entre colônias por meio do mecanismo de voo.
Aplicação da Teoria dos Jogos de Nash com Filtragem HMM em Trading
Este artigo explora a aplicação da teoria dos jogos de John Nash, especificamente o Equilíbrio de Nash, no mercado financeiro. Ele discute como os traders podem utilizar scripts em Python e MetaTrader 5 para identificar e explorar ineficiências do mercado utilizando os princípios de Nash. O artigo oferece um guia passo a passo sobre como implementar essas estratégias, incluindo o uso de Modelos Ocultos de Markov (HMM) e análise estatística para melhorar o desempenho das negociações.
Consultor Especialista Auto-Otimizável com MQL5 e Python (Parte V): Modelos de Markov Profundos
Nesta discussão, aplicaremos uma Cadeia de Markov simples sobre um indicador RSI, para observar como o preço se comporta após o indicador atravessar níveis-chave. Concluímos que os sinais de compra e venda mais fortes no par NZDJPY são gerados quando o RSI está nas faixas de 11-20 e 71-80, respectivamente. Vamos demonstrar como você pode manipular seus dados para criar estratégias de trading ideais aprendidas diretamente a partir dos dados que possui. Além disso, mostraremos como treinar uma rede neural profunda para aprender a utilizar a matriz de transição de forma otimizada.
Simulação de mercado: Position View (XIX)
Uma das coisas que mais tem me incomodado, é o fato da classe C_ElementsTrade, ter em seu código, coisas que permitem acessar as posições. Não entenda isto como uma falha, pois de fato não é. Apenas torna algumas partes do que precisaremos fazer no futuro, algo um tanto quanto sujeitas a erros. Todo o trabalho que tem sido feito, para implementar o indicador de posição. Tem sido feito, pensando em usar ele no replay/simulador. Porém, uma vez que ele esteja sendo usado no replay/simulador. Não teremos de forma alguma acesso a uma posição real. Sendo assim, qualquer chamada da biblioteca MQL5, cujo objetivo é acessar dados da posição. Não terão qualquer efeito no código.
Do básico ao intermediário: Classes (II)
Este artigo foi pensado para ser o mais didático possível. Isto porque o tema que será abordado aqui, por si só já gera muita confusão na cabeça de muita gente. Então meu caro leitor, procure experimentar na prática o que estará sendo visto aqui em forma de texto. E qualquer dúvida, não deixe de comentar. Pois de fato entender destructores não é uma das tarefas mais simples.
Aplicando Seleção de Recursos Localizada em Python e MQL5
Este artigo explora um algoritmo de seleção de recursos introduzido no artigo 'Local Feature Selection for Data Classification' de Narges Armanfard et al. O algoritmo é implementado em Python para construir modelos de classificação binária que podem ser integrados com aplicativos MetaTrader 5 para inferência.
Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit
Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.
Explorando a Criptografia no MQL5: Uma Abordagem Passo a Passo
Este artigo explora a integração da criptografia dentro do MQL5, aprimorando a segurança e a funcionalidade dos algoritmos de negociação. Cobriremos os principais métodos criptográficos e sua implementação prática no trading automatizado.
Do básico ao intermediário: Navegando na SandBox
Neste artigo veremos duas formas de observar e até mesmo ter alguma interação com o conteúdo presente em uma SandBox. Isto usando a plataforma MetaTrader 5 como ponto de apoio. Entender o conteúdo mostrado neste artigo, será primordial para entender o que será visto nos próximos artigos.
Construa EAs auto-otimizáveis em MQL5 (Parte 3): Acompanhamento dinâmico de tendência e retorno à média
Os mercados financeiros geralmente são classificados como estando em consolidação (movimento lateral) ou em tendência. Essa visão estática do mercado pode facilitar o trading no curto prazo. No entanto, ela está desconectada da realidade do mercado. Neste artigo, vamos tentar compreender melhor como exatamente os mercados financeiros transitam entre esses dois possíveis regimes e vamos tentar compreender melhor como exatamente os mercados financeiros transitam entre esses dois possíveis regimes e como podemos utilizar esse novo entendimento do comportamento do mercado para ganhar confiança em nossas estratégias de trading algorítmico.
Simulação de mercado: Position View (VI)
Neste artigo, faremos diversas melhorias, visando obter com que o indicador de posição, venha a refletir o que de fato está ocorrendo no servidor de negociação em termos de posições e seu status atual. Devo lembrar, que estas aplicações que serão mostradas aqui, não visam de maneira alguma substituir qualquer elemento presente no MetaTrader 5. E tal pouco devem ser utilizadas sem os devidos cuidados e critérios. Já que elas tem como objetivo terem um código didático. Ou seja, para fins de aprendizado de como as coisas funcionam. E o motivo para que eu diga que o código é didático. É pelo fato de que o uso de mensagens em alguns casos não é a melhor forma de implementar as coisas.
Definição de sobrecompra e sobrevenda segundo a teoria do caos
Determinamos as zonas de sobrecompra e sobrevenda do mercado a partir da teoria do caos: uma integração dos princípios da teoria do caos, da geometria fractal e das redes neurais para prever os mercados financeiros. O estudo demonstra o uso do expoente de Lyapunov como medida da natureza caótica do mercado e a adaptação dinâmica dos sinais de trade. A metodologia inclui um algoritmo de geração de ruído fractal, ativação tangencial hiperbólica e otimização com momento.