Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU
Com o rápido desenvolvimento da inteligência artificial hoje em dia, os modelos de linguagem (LLMs) são uma parte importante da IA, então devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e depois aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost
AdaBoost, um poderoso algoritmo de boosting projetado para elevar o desempenho dos seus modelos de IA. AdaBoost, abreviação de Adaptive Boosting, é uma técnica sofisticada de aprendizado em conjunto que integra perfeitamente aprendizes fracos, aprimorando sua força preditiva coletiva.
Otimização por Quimiotaxia Bacteriana (BCO)
Este artigo apresenta a versão original do algoritmo de otimização por quimiotaxia bacteriana (Bacterial Chemotaxis Optimization, BCO) e sua variante modificada. Examinaremos detalhadamente todas as diferenças, com foco especial na nova versão BCOm, que simplifica o mecanismo de movimento das bactérias, reduz a dependência do histórico de mudanças de posição e emprega operações matemáticas mais simples em comparação com a versão original, que possui um alto custo computacional. Além disso, serão realizados testes e apresentadas conclusões.
Avaliação visual e ajuste da negociação no MetaTrader 5
No testador de estratégias, é possível não apenas otimizar os parâmetros do robô de negociação. Vamos mostrar como avaliar, após o fato, o histórico de negociação de sua conta e fazer ajustes na negociação dentro do testador, alterando os tamanhos dos stop orders das posições abertas.
Análise de todas as variantes do movimento do preço em um computador quântico da IBM
Usamos o computador quântico da IBM para abrir todos os cenários possíveis de movimento do preço. Parece ficção científica? Bem-vindo ao mundo dos cálculos quânticos aplicados ao trading!
Do básico ao intermediário: União (II)
Este será um artigo muito divertido e bastante curioso em diversos aspectos. Ele abordará a união para resolver um problema discutido anteriormente. Além disso, exploraremos algumas situações inusitadas que podem surgir ao usar uma união em aplicativos. O conteúdo exposto aqui visa pura e simplesmente a didática. De modo algum deve ser encarado como uma aplicação cuja finalidade não seja o aprendizado e estudo dos conceitos mostrados.
Do básico ao intermediário: Struct (I)
Que tal começarmos a estudar estruturas de uma forma bem mais simples, prática e agradável? Isto por que estruturas é um dos fundamentos, ou pilares da programação. Seja ela estruturada ou não. Sei que muitos acham que estruturas são apenas coleções de dados. Mas posso garantir que elas são muito mais do que isto. E aqui iremos começar a explorar este novo universo, de uma maneira que seja a mais didática possível.
Usando PSAR, Heiken Ashi e Aprendizado Profundo Juntos para Operações de Trading
Este projeto explora a fusão entre aprendizado profundo e análise técnica para testar estratégias de trading no mercado de câmbio (forex). Um script em Python é usado para experimentação rápida, utilizando um modelo ONNX juntamente com indicadores tradicionais como PSAR, SMA e RSI para prever movimentos do par EUR/USD. Um script em MetaTrader 5 então leva essa estratégia para um ambiente ao vivo, usando dados históricos e análise técnica para tomar decisões de trading mais informadas. Os resultados do backtesting indicam uma abordagem cautelosa, porém consistente, com foco em gestão de risco e crescimento estável em vez da busca agressiva por lucros.
Desenvolvendo Sistemas de Trading ICT Avançados: Implementando Order Blocks em um Indicador
Neste artigo, vamos aprender a criar um indicador que detecta, desenha e emite alertas sobre a mitigação de order blocks. Também veremos em detalhes como identificar esses blocos no gráfico, configurar alertas precisos e visualizar sua posição utilizando retângulos, para compreender melhor a ação do preço. Este indicador servirá como uma ferramenta-chave para traders que seguem os Smart Money Concepts e a metodologia do Inner Circle Trader.
Redes neurais em trading: Transformer parâmetro-eficiente com atenção segmentada (PSformer)
Apresentamos o novo framework PSformer, que adapta a arquitetura do Transformer puro para resolver tarefas de previsão de séries temporais multivariadas. O framework é baseado em duas inovações principais: o mecanismo de compartilhamento de parâmetros (PS) e a atenção aos segmentos espaço-temporais (SegAtt).
Indicador de força e direção da tendência em barras 3D
Vamos considerar uma nova abordagem para analisar tendências de mercado, baseada em visualização tridimensional e análise tensora da microestrutura do mercado.
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I
Neste artigo, vamos realizar um estudo sobre vários métodos aplicados em algoritmos genéticos binários e outros algoritmos populacionais. Vamos examinar os componentes principais do algoritmo, como seleção, crossover e mutação, bem como seu impacto no processo de otimização. Além disso, vamos explorar as formas de representação de informações e seu impacto nos resultados de otimização.
Analisando exemplos de estratégias de trading no terminal do cliente
O artigo examina, com base em diagramas de blocos, a lógica dos Expert Advisors (EAs) educacionais incluídos no terminal, localizados na pasta Experts > Free Robots, que operam com padrões de velas.
Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA
Neste artigo, analisamos em detalhes os aspectos importantes para a escolha dos dados mais relevantes e de qualidade do mercado Forex e para melhorar o desempenho dos modelos de inteligência artificial.
Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de estratégia de trading com LLM (I) - Ajuste fino
Os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial que evolui rapidamente. E para aproveitar isso devemos pensar em como integrar LLMs avançados em nossa negociação algorítmica Muitos acham desafiador ajustar esses modelos de acordo com suas necessidades, implantá-los localmente e, logo, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.
Do básico ao intermediário: Herança
Este com toda a certeza, é um artigo, que você deverá dedicar um bom tempo a fim de entender como, por que as coisas mostradas aqui funcionam. Isto pelo simples fato de que, tudo que será visto e mostrado aqui, é originalmente direcionado ao que seria uma programação orientada em objetos. Mas que na verdade, tem como base e princípios uma programação estrutural.
Percepções de Negociação por Meio do Volume: Confirmação de Tendência
A Técnica Aprimorada de Confirmação de Tendência combina ação de preço, análise de volume e aprendizado de máquina para identificar movimentos genuínos do mercado. Ela requer tanto rompimentos de preço quanto aumentos de volume (50% acima da média) para validação da negociação, enquanto utiliza uma rede neural LSTM para confirmação adicional. O sistema emprega dimensionamento de posição baseado em ATR e gerenciamento dinâmico de risco, tornando-o adaptável a várias condições de mercado, ao mesmo tempo em que filtra sinais falsos.
Desenvolvendo um sistema de Replay (Parte 52): Complicando as coisas (IV)
Neste artigo vamos fazer uma mudança no indicador de mouse a fim de poder efetuar a interação com o indicador de controle, já que a interação está sendo feita de forma errática.
Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)
Em trabalhos anteriores, sempre avaliamos o estado atual do ambiente. No entanto, a dinâmica das mudanças dos indicadores sempre ficou "nos bastidores". Neste artigo, quero apresentar a vocês um algoritmo que permite avaliar a mudança direta dos dados entre dois estados consecutivos do ambiente.
Algoritmo do buraco negro — Black Hole Algorithm (BHA)
O algoritmo do buraco negro (Black Hole Algorithm, BHA) utiliza os princípios da gravidade dos buracos negros para otimizar soluções. Neste artigo, vamos explorar como o BHA atrai as melhores soluções, evitando mínimos locais, e por que esse algoritmo se tornou uma ferramenta poderosa para resolver problemas complexos. Descubra como ideias simples podem gerar resultados impressionantes no mundo da otimização.
Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)
Neste artigo explicarei grande parte da classe C_ChartFloatingRAD. Esta é responsável por fazer com que o Chart Trade funcione. Porém aqui não irei de fato terminar a explicação. A mesma será finalizada no próximo artigo. Já que o conteúdo neste artigo é bastante denso e precisa ser compreendido a fundo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Simulação de mercado (Parte 16): Sockets (X)
Estamos a um passo de concluir este desafio. Porém, quero que você, caro leitor, procure entender primeiro estes dois artigos. Tanto este como o anterior. Isto para que consiga de fato entender o próximo onde abordarei exclusivamente a parte referente a programação em MQL5. Apesar de que ali a coisa será igualmente voltada a ser fácil de entender. Se você não compreender estes dois últimos artigos. Com toda a certeza terá grandes problemas em entender o próximo. O motivo disto é simples: As coisas vão se acumulando. Quando mais coisas é preciso fazer, mais coisas é preciso criar e entender para poder atingir o objetivo.
Algoritmo da Cauda de Cometa (Comet Tail Algorithm, CTA)
Neste artigo, vamos explorar o novo algoritmo de otimização autoral CTA (Comet Tail Algorithm), que se inspira em objetos cósmicos únicos, nomeadamente em cometas e suas impressionantes caudas, formadas quando se aproximam do Sol. Esse algoritmo é baseado no conceito de movimento dos cometas e suas caudas, e foi projetado para encontrar soluções ótimas em problemas de otimização.
Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real
À medida que nos aproximamos de um EA pronto, é necessário prestar atenção em questões secundárias na etapa de teste da estratégia de trading, mas que se tornam importantes ao migrar para o trading real.
Construindo Expert Advisors Auto-otimizantes Com MQL5 E Python (Parte II): Ajustando Redes Neurais Profundas
Modelos de aprendizado de máquina vêm com vários parâmetros ajustáveis. Nesta série de artigos, exploraremos como personalizar seus modelos de IA para se ajustar ao seu mercado específico utilizando a biblioteca SciPy.
Criando um Painel Administrativo de Negociação em MQL5 (Parte II): Aprimorando a Responsividade e Mensagens Rápidas
Neste artigo, vamos aprimorar a responsividade do Painel Administrativo que criamos anteriormente. Além disso, vamos explorar a importância das mensagens rápidas no contexto de sinais de negociação.
Simplificando a negociação com base em notícias (Parte 4): Aumentando o desempenho
Neste artigo, serão apresentados métodos para melhorar o desempenho do EA no testador de estratégias, além da implementação de um código para dividir o horário dos eventos de notícias em categorias por hora. O acesso a esses eventos será permitido apenas no horário especificado para cada um. Isso permite que o EA gerencie operações de maneira eficiente com base nos eventos, tanto em condições de alta quanto de baixa volatilidade.
Desenvolvendo um sistema de Replay (Parte 51): Complicando as coisas (III)
Neste artigo você irá compreender uma das coisas mais complexas que existe na programação MQL5. A forma correta de adquirir a ID de gráfico, e por que algumas vezes objetos não são plotados no gráfico. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Simulação de mercado (Parte 09): Sockets (III)
Este artigo é continuação do artigo anterior. Aqui vamos ver como o Expert Advisor será implementado. Mas principalmente como deverá ser feito o código do servidor. Isto por que, o código que foi visto no artigo anterior não é o suficiente para que possamos de fato fazer com que as coisas funcionem como deverão. Então é necessário que você veja ambos artigos para compreender mais profundamente o que estará acontecendo.
Simulação de mercado (Parte 10): Sockets (IV)
Aqui neste artigo mostrei o que você precisa fazer para começar a usar o Excel para controlar o MetaTrader 5. Mas faremos isto de uma forma bastante interessante. Para fazer isto iremos usar um Add-in no Excel. Isto para não precisar de fato fazer uso do VBA presente no Excel. Se você não sabe de que Add-in estou falando. Veja este artigo e aprenda como fazer para programar em Python diretamente dentro do Excel.
Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)
Continuamos a explorar a análise e previsão de séries temporais na área de frequência. E nesta matéria, apresentaremos um novo método de previsão nessa área, que pode ser adicionado a muitos dos algoritmos que já estudamos anteriormente.
Do básico ao intermediário: Indicador (IV)
Neste artigo, vermos como é fácil de criar e implementar uma metodologia operacional, visando colorir candles. Sendo este um conceito, que diversos operadores apreciam imensamente. Porém, é preciso se tomar cuidado ao implementar tal tipo de coisa. Isto para que as barras, ou candles, mantenham a sua aparência original. Visando assim não prejudicar a leitura que muitos operadores fazem candle a candle.
Arbitragem de swap no Forex: Montando uma carteira sintética e criando um fluxo estável de swaps
Quer saber como lucrar com a diferença entre taxas de juros? Neste artigo, veremos como usar a arbitragem de swap no Forex para obter uma renda estável todas as noites, criando uma carteira resistente às oscilações do mercado.
Simulação de mercado: Iniciando o SQL no MQL5 (I)
Neste artigo, começaremos a explorar o uso do SQL dentro de um código MQL5. Vemos como podemos cria um banco de dados. Ou melhor dizendo, como podemos criar um arquivo de banco de dados em SQLite, usando para isto dispositivos ou procedimentos contidos dentro da linguagem MQL5. Veremos também, como criar uma tabela e depois como criar uma relação entre tabelas via chave primária e chave estrangeira. Isto tudo, usando novamente o MQL5. Veremos como é simples tornar um código que poderá no futuro ser portado para outras implementações do SQL, usando uma classe para nos ajudar a ocultar a implementação que está sendo criada. E o mais importante de tudo. Veremos que em diversos momentos, podemos correr o risco de fazer algo não dar certo ao usarmos SQL. Isto devido ao fato de que dentro do código MQL5, um código SQL irá ser sempre colocado como sendo uma STRING.
Teoria das Categorias em MQL5 (Parte 21): Transformações naturais com LDA
Este artigo, o 21º de nossa série, continua nossa análise das transformações naturais e de como elas podem ser implementadas usando a análise discriminante linear. Assim como no artigo anterior, a implementação é apresentada no formato de uma classe de sinal.
Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias
Os modelos que estamos criando estão se tornando cada vez maiores e mais complexos. Com isso, aumentam os custos não apenas para o treinamento, mas também para a operação. Além disso, muitas vezes nos deparamos com situações em que o tempo de tomada de decisão é crítico. E, por isso, voltamos nossa atenção para métodos de otimização de desempenho dos modelos sem perder qualidade.
Redes neurais em trading: Transformer com codificação relativa
O aprendizado autossupervisionado pode ser uma forma eficaz de analisar grandes volumes de dados brutos não rotulados. O principal fator de sucesso é a adaptação dos modelos às particularidades dos mercados financeiros, o que melhora o desempenho dos métodos tradicionais. Este artigo apresentará um mecanismo alternativo de atenção, que permite levar em conta dependências relativas e inter-relações entre os dados brutos.
Computação quântica e trading: Um novo olhar sobre as previsões de preços
Este artigo analisa uma abordagem inovadora para prever os movimentos de preços nos mercados financeiros mediante computação quântica. O foco principal está na aplicação do algoritmo de estimativa de fase quântica (QPE) para buscar precursores de padrões de preços, o que permite acelerar significativamente o processo de análise de dados de mercado.
Negociação com spreads no mercado Forex usando o fator de sazonalidade
Este artigo analisa as possibilidades de criação e fornecimento de dados de relatórios sobre o uso do fator de sazonalidade na negociação por meio de spreads no mercado Forex.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes
Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.