Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes
O EA em desenvolvimento deve apresentar bons resultados ao operar com diferentes corretoras. Porém, até agora, os testes foram realizados com base em cotações de uma conta de demonstração da MetaQuotes. Vamos verificar se o EA está pronto para operar em contas reais com cotações diferentes das utilizadas durante os testes e otimizações.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert
Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.
Do básico ao intermediário: Template e Typename (III)
Neste artigo iremos ver a primeira parte de algo que para iniciantes é muito confuso de entender. Mas para que fique devidamente explicado e assim o tema não se torne confuso, além do necessário. Irei dividir a coisa em etapas. A primeira etapa é a que estará sendo mostrada neste artigo. No entanto, apesar de no final parecer que ficamos em um beco sem saída. Não será bem isto que estará ocorrendo. Já que o próximo passo nos levará a uma outra situação em que será melhor entendida no próximo artigo.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks
O Deep-Q-Network é um algoritmo de aprendizado por reforço que utiliza redes neurais para projetar (estimar) o próximo valor-Q e a ação ideal durante o processo de treinamento de um módulo de aprendizado de máquina. Já consideramos um algoritmo alternativo de aprendizado por reforço, o Q-Learning. Este artigo, portanto, apresenta outro exemplo de como um MLP treinado com aprendizado por reforço pode ser usado dentro de uma classe de sinal personalizada.
Negociando com o Calendário Econômico do MQL5 (Parte 1): Dominando as Funções do Calendário Econômico do MQL5
Neste artigo, exploramos como usar o Calendário Econômico do MQL5 para negociar, primeiro entendendo suas funcionalidades principais. Em seguida, implementamos funções-chave do Calendário Econômico no MQL5 para extrair dados relevantes de notícias para decisões de negociação. Por fim, concluímos mostrando como utilizar essas informações para aprimorar as estratégias de negociação de forma eficaz.
Portfolio Risk Model using Kelly Criterion and Monte Carlo Simulation
Por décadas, traders vêm utilizando a fórmula do Critério de Kelly para determinar a proporção ideal de capital a ser alocada em um investimento ou aposta, a fim de maximizar o crescimento de longo prazo enquanto minimiza o risco de ruína. No entanto, seguir cegamente o Critério de Kelly utilizando o resultado de um único backtest costuma ser perigoso para traders individuais, pois, na negociação ao vivo, a vantagem de trading diminui com o tempo, e o desempenho passado não é garantia de resultado futuro. Neste artigo, apresentarei uma abordagem realista para aplicar o Critério de Kelly para alocação de risco de um ou mais EAs no MetaTrader 5, incorporando resultados de simulação de Monte Carlo provenientes do Python.
Simulação de mercado (Parte 20): Iniciando o SQL (III)
Apesar de podermos fazer as coisas com um banco de dados, tendo cerca de 10 ou pouco mais registros. A coisa realmente se torna melhor assimilada, quando usamos um arquivo de banco de dados que contenha mais de 15 mil registros. Ou seja, se você for criar isto manualmente irá ser uma bela de uma tarefa. No entanto, dificilmente você irá encontrar algum banco de dados, mesmo para fins didáticos disponível para download. Mas não precisamos de fato recorrer a este tipo de coisa. Podemos usar o MetaTrader 5, para criar um banco de dados para nos. Neste artigo veremos como fazer isto.
Como integrar o conceito de Smart Money (OB) em combinação com o indicador Fibonacci para entrada ideal na operação
As SMC (Order Block) são áreas-chave em que os traders institucionais realizam compras ou vendas significativas. Após uma movimentação considerável de preço, os níveis de Fibonacci ajudam a identificar um possível recuo desde o máximo recente de oscilação (swing high) até o mínimo de oscilação (swing low), de modo a determinar o ponto de entrada ideal na operação.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 8): Desenvolvimento de Expert Advisor (I)
Nesta discussão, vamos criar nosso primeiro Expert Advisor em MQL5 com base no indicador que fizemos no artigo anterior. Vamos cobrir todas as funcionalidades necessárias para tornar o processo automático, incluindo o gerenciamento de riscos. Isso beneficiará extensivamente os usuários ao avançarem da execução manual de negociações para sistemas automatizados.
Do básico ao intermediário: Objetos (II)
Neste artigo veremos como controlar de forma simples via código algumas propriedades de objetos. Vermos como podemos colocar mais de um objeto em um mesmo gráfico, usando para isto uma aplicação. E além disto, começaremos a ver a importância de definir um nome curto, para todo e qualquer indicador que venhamos a implementar.
Informação mútua como critério para seleção progressiva de características
Neste artigo apresentamos a implementação da seleção progressiva de características em MQL5, baseada na informação mútua entre o conjunto ótimo de preditores e a variável alvo.
Redes neurais em trading: Transformer eficiente em parâmetros com atenção segmentada (Conclusão)
No artigo anterior, abordamos os aspectos teóricos do framework PSformer, que incorpora duas inovações principais na arquitetura clássica do Transformer: o mecanismo de compartilhamento de parâmetros (Parameter Shared — PS) e a atenção a segmentos espaço-temporais (SegAtt). Neste artigo, damos continuidade à implementação dessas abordagens usando os recursos do MQL5.
Neurônio biológico para previsão de séries temporais financeiras
Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?
Desenvolvendo um sistema de Replay (Parte 64): Dando play no serviço (V)
Neste artigo irei mostrar como corrigir duas falhas que se encontram presentes no código. No entanto tais correções foram explicadas para que você, aspirante a programador, consiga entender que nem sempre as coisas irão acontecer como você havia previsto. Mas isto não é motivo para desespero e sim uma oportunidade de aprendizado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado
A decomposição em valores singulares truncada (TruncatedSVD) e a fatoração de matriz não negativa (NMF) são métodos de redução de dimensionalidade. Ambos podem ser bastante úteis ao trabalhar com estratégias de negociação baseadas na análise de dados. Neste artigo, analisamos a aplicabilidade desses métodos no processamento de dados complexos de mercado, incluindo suas capacidades de redução de dimensionalidade para otimizar a análise quantitativa nos mercados financeiros.
Integração do MQL5 com pacotes de processamento de dados (Parte 1): Análise avançada de dados e processamento estatístico
A integração permite um fluxo de trabalho contínuo, no qual os dados financeiros brutos do MQL5 podem ser importados para pacotes de processamento de dados, como o Jupyter Lab, possibilitando análises avançadas, incluindo testes estatísticos.
Fibonacci no Forex (Parte I): Testando relações entre preço e tempo
Como o mercado se movimenta com base em proporções derivadas dos números de Fibonacci? Essa sequência, em que cada número é a soma dos dois anteriores (1, 1, 2, 3, 5, 8, 13, 21...), não descreve apenas o crescimento da população de coelhos. Vamos considerar a hipótese de Pitágoras de que tudo no mundo obedece a certas proporções numéricas...
Do básico ao intermediário: Recursividade
Este artigo, veremos um conceito de programação muito interessante e bem divertido. Porém que deve ser tratado com extremo respeito. Já que um mal uso, ou mal entendimento do mesmo, torna programas relativamente simples em algo desnecessariamente complicado. Porém o bom uso, e a perfeita adequação em situações igualmente adequadas. Torna a recursividade um grande aliado para resolver questões que de outra forma seria muito mais trabalhoso e demorado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Redes neurais em trading: Explorando a estrutura local dos dados
A identificação eficaz e a preservação da estrutura local dos dados de mercado em meio ao ruído são tarefas cruciais no trading. Embora o uso do mecanismo Self-Attention tenha mostrado bons resultados no processamento desses dados, o método clássico não leva em conta as características locais da estrutura original. Neste artigo, proponho conhecer um algoritmo capaz de considerar essas dependências estruturais.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 40): Parabolic SAR
O Parabolic Stop-and-Reversal (SAR) é um indicador de pontos de confirmação e término de tendência. Como ele detecta tendências com atraso, sua principal função era posicionar ordens stop-loss móveis para posições abertas. Vamos analisar se é possível utilizá-lo como sinal de EA com a ajuda de classes de sinais personalizadas para EAs, montadas usando o Assistente.
Criando um painel de administração de trading em MQL5 (Parte VII): Usuário confiável, recuperação e criptografia
Alertas de segurança, como aqueles que aparecem sempre que o gráfico é atualizado, uma nova par é adicionada ao chat do painel administrativo do EA ou o terminal é reiniciado, podem se tornar cansativos. Nesta discussão, vamos analisar e implementar uma função que rastreia o número de tentativas de login para identificar um usuário confiável. Após um determinado número de tentativas malsucedidas, o aplicativo passará para um procedimento avançado de login, que também facilita a recuperação de senha para usuários que possam tê-la esquecido. Além disso, veremos como é possível integrar de forma eficiente a criptografia no painel administrativo para aumentar a segurança.
Gestão de capital no trading e programa de contabilidade pessoal do trader com banco de dados
Como um trader deve gerir seu capital? Como um trader e investidor deve controlar despesas, receitas, ativos e passivos? Eu vou apresentar não apenas um programa de controle, mas sim uma ferramenta que pode se tornar seu guia financeiro confiável no turbulento mar do trading.
Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais
Este artigo analisa um dos mais conhecidos critérios de homogeneidade não-paramétricos, o critério de Smirnov. São analisados tanto dados modelados quanto cotações reais. É apresentado um exemplo de construção do indicador de não-estacionaridade (iSmirnovDistance).
Aplicação da teoria dos jogos em algoritmos de trading
Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5
Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.
Técnicas do MQL5 Wizard que você precisa conhecer (Parte 36): Q-Learning com Cadeias de Markov
Aprendizado por Reforço é um dos três pilares principais do aprendizado de máquina, ao lado do aprendizado supervisionado e do aprendizado não supervisionado. Portanto, ele está relacionado ao controle ótimo, ou seja, aprender a melhor política de longo prazo que melhor se adeque à função objetivo. É nesse contexto que exploramos seu possível papel no processo de aprendizado de uma MLP (rede neural de múltiplas camadas) de um Expert Advisor montado pelo assistente do MQL5 Wizard.
Desenvolvendo um EA multimoeda (Parte 24): Conectando uma nova estratégia (I)
Neste artigo, vamos analisar como conectar uma nova estratégia ao sistema de otimização automática criado. Vamos ver quais EAs precisaremos criar e se será possível evitar alterações nos arquivos da biblioteca Advisor, ou pelo menos reduzi-las ao mínimo.
Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA
Nesta série de artigos, analisamos estratégias clássicas de negociação usando algoritmos modernos para determinar se podemos melhorar a estratégia utilizando IA. No artigo de hoje, revisamos uma abordagem clássica para negociar o SP500 usando a relação que ele tem com as Notas do Tesouro dos EUA.
Redes neurais em trading: Abordagem sem máscara para previsão do movimento de preços
Neste artigo, apresentamos o método Mask-Attention-Free Transformer (MAFT) e sua aplicação na área de trading. Ao contrário dos Transformers tradicionais, que exigem mascaramento de dados ao processar sequências, o MAFT otimiza o processo de atenção, eliminando a necessidade de mascaramento, o que melhora significativamente a eficiência computacional.
Ciência de dados e aprendizado de máquina (Parte 31): Aplicação de modelos CatBoost no trading
Os modelos de inteligência artificial CatBoost ganharam enorme popularidade na comunidade de aprendizado de máquina graças à sua precisão nas previsões, eficiência e resistência a conjuntos de dados fragmentados e complexos. Este artigo trata de como usar esses modelos no mercado Forex.
Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)
Neste artigo, proponho olhar a questão da construção de uma estratégia de trading de outra perspectiva. Em vez de prever o movimento futuro dos preços, tentaremos construir um sistema de trading baseado na análise de dados históricos.
Do básico ao intermediário: Template e Typename (IV)
Aqui neste artigo, iremos ver de forma bem didática, como resolver um problema que foi demonstrado no final do artigo anterior. Onde estaríamos tentando fazer com que um template de tipo fosse criado, a fim de que fosse possível criar um template de uma união de dados.
Simulação de mercado (Parte 17): Sockets (XI)
Implementar a parte que será executada aqui no MetaTrader 5, está longe de ser complicado. Mas existem diversos cuidados e pontos de atenção a serem observados. Isto para que você caro leitor, consiga de fato fazer com que o sistema funcione. Lembre-se de uma coisa: Você não executará um único programa. Você estará na verdade, executando três programas ao mesmo tempo. E é importante que cada um seja implementado e construído de forma que trabalhem e conversem entre si. Isto sem que eles fiquem completamente sem saber o que cada um está querendo ou desejando fazer.
Reconhecimento de Padrões Usando Dynamic Time Warping em MQL5
Neste artigo, discutimos o conceito de dynamic time warping como uma forma de identificar padrões preditivos em séries temporais financeiras. Veremos como ele funciona e também apresentaremos sua implementação em MQL5 puro.
Simulação de mercado: Position View (XVI)
Neste artigo, faremos as modificações necessárias para que o indicador de posição venha a nos apresentar um resultado financeiro. Isto para que o operador, possa ter uma noção do financeiro que estaria sendo obtido em uma posição aberta. Além deste objetivo, aqui trarei para você, um conhecimento que muitos não tem. Mesmo fazendo uso da linguagem MQL5 a muito tempo. Tal conhecimento é justamente como fazer uso de variáveis estáticas, para conseguir um compartilhamento de memória. Isto para evitar declarar uma variável global no código principal.
Redes neurais em trading: Modelo de dupla atenção para previsão de tendências
Damos continuidade à discussão sobre o uso da representação linear por partes de séries temporais, iniciada no artigo anterior. Hoje, falaremos sobre a combinação desse método com outras abordagens de análise de séries temporais para melhorar a qualidade da previsão das tendências dos movimentos de preços.
Do básico ao intermediário: Eventos em Objetos (I)
Neste artigo irei ver três dos seis eventos que podem ser disparado pelo MetaTrader 5, quando algo acontece a um objeto presente no gráfico. Estes evento são muito uteis quando o assunto é interação com o usuário. Isto por que sem entender estes eventos, você irá ter muito mais trabalho para manter uma certa configuração no gráfico. Tentando controlar objetos com finalidades específicas.
Métodos de otimização da biblioteca ALGLIB (Parte I)
Neste artigo, vamos conhecer os métodos de otimização da biblioteca ALGLIB para MQL5. O artigo inclui exemplos simples e visuais de aplicação da ALGLIB para resolver tarefas de otimização, o que tornará o processo de aprendizado dos métodos o mais acessível possível. Analisaremos detalhadamente a integração de algoritmos como BLEIC, L-BFGS e NS, e com base neles resolveremos uma tarefa de teste simples.
Negociação de notícias facilitada (parte 5): realizando negociações (II)
Este artigo expandirá a classe de gerenciamento de trades para incluir ordens buy-stop e sell-stop para operar em eventos de notícias e implementará uma restrição de expiração nessas ordens para evitar qualquer negociação durante a noite. Uma função de slippage será incorporada ao expert para tentar prevenir ou minimizar possíveis deslizes que podem ocorrer ao usar ordens stop no trading, especialmente durante eventos de notícias.
Redefinindo os Indicadores MQL5 e MetaTrader 5
Uma abordagem inovadora para coletar informações de indicadores em MQL5 permite uma análise de dados mais flexível e simplificada, ao possibilitar que os desenvolvedores passem entradas personalizadas para os indicadores para cálculos imediatos. Essa abordagem é particularmente útil para o trading algorítmico, pois fornece maior controle sobre as informações processadas pelos indicadores, indo além das restrições tradicionais.