Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Medindo o valor informativo do Indicador

Medindo o valor informativo do Indicador

O aprendizado de máquina se tornou uma técnica popular de desenvolvimento de estratégias. Na negociação, tradicionalmente, mais atenção é dada à maximização da lucratividade e à precisão das previsões. Enquanto isso, o processamento de dados usado para construir modelos preditivos permanece na periferia. Neste artigo, discutimos o uso do conceito de entropia para avaliar a adequação de indicadores na construção de modelos preditivos, conforme descrito no livro Testing and Tuning Market Trading Systems escrito por Timothy Masters.
preview
Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Você sabia que podemos obter mais precisão ao prever certos indicadores técnicos do que ao prever o preço subjacente de um símbolo negociado? Junte-se a nós para explorar como aproveitar essa percepção para melhores estratégias de negociação
preview
Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5

Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5

Continuamos a estudar o método de agrupamento. Neste artigo, criaremos uma nova classe CKmeans para implementar um dos métodos de agrupamento k-médias mais comuns. Com base nos resultados dos testes, podemos concluir que o modelo é capaz de identificar cerca de 500 padrões.
preview
Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)

Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)

Um dos principais desafios do aprendizado por reforço é a exploração do ambiente. Anteriormente, já nos iniciamos no método de exploração baseado na curiosidade interna. E hoje proponho considerar outro algoritmo, o de exploração por desacordo.
preview
Algoritmos de otimização populacional: busca por difusão estocástica (Stochastic Diffusion Search, SDS)

Algoritmos de otimização populacional: busca por difusão estocástica (Stochastic Diffusion Search, SDS)

O artigo aborda a busca por difusão estocástica, SDS, um algoritmo de otimização muito poderoso e prático, baseado nos princípios de passeio aleatório. O algoritmo permite encontrar soluções ótimas em espaços multidimensionais complexos, possuindo uma alta velocidade de convergência e a capacidade de evitar extremos locais.
preview
Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.
preview
Algoritmos de otimização populacionais: Algoritmo do morcego

Algoritmos de otimização populacionais: Algoritmo do morcego

Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.
preview
Dominando o ONNX: Ponto de virada para traders MQL5

Dominando o ONNX: Ponto de virada para traders MQL5

Mergulhe no mundo do ONNX, um poderoso formato aberto para compartilhar modelos de aprendizado de máquina. Descubra como o uso do ONNX pode revolucionar a negociação algorítmica em MQL5, permitindo que os traders integrem sem obstáculos modelos avançados de inteligência artificial e elevem suas estratégias a um novo patamar. Desvende os segredos da compatibilidade entre plataformas e aprenda a desbloquear todo o potencial do ONNX em sua negociação no MQL5. Melhore sua negociação com este guia detalhado sobre ONNX.
preview
Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Neste artigo, continuamos a estudar os fundamentos da programação em MQL5. Vamos abordar arrays, funções personalizadas, pré-processadores e manipulação de eventos. Para maior clareza, cada passo de todas as explicações será acompanhado por código. Esta série de artigos estabelece a base para o estudo do MQL5, com ênfase na explicação de cada linha de código.
preview
Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado

Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado

Nesta série de artigos, já mencionamos a transferência de aprendizado mais de uma vez. Mas até agora o assunto não foi além das menções. Sugiro preencher essa lacuna e dar uma olhada mais de perto na transferência de aprendizado.
preview
Algoritmos de otimização populacionais: Colônia artificial de abelhas (Artificial Bee Colony, ABC)

Algoritmos de otimização populacionais: Colônia artificial de abelhas (Artificial Bee Colony, ABC)

Hoje estudaremos o algoritmo de colônia artificial de abelhas. Complementaremos nosso conhecimento com novos princípios para estudar espaços funcionais. E neste artigo falarei sobre minha interpretação da versão clássica do algoritmo.
preview
Data Science e Machine Learning (Parte 23): Por que o LightGBM e o XGBoost superam muitos modelos de IA?

Data Science e Machine Learning (Parte 23): Por que o LightGBM e o XGBoost superam muitos modelos de IA?

Essas técnicas avançadas de árvores de decisão com boosting de gradiente oferecem desempenho superior e flexibilidade, tornando-as ideais para modelagem financeira e trading algorítmico. Aprenda como aproveitar essas ferramentas para otimizar suas estratégias de trading, melhorar a precisão preditiva e ganhar uma vantagem competitiva nos mercados financeiros.
preview
Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos

Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos

Nos mercados de forex, é muito desafiador prever a tendência futura sem ter uma ideia do passado. Poucos modelos de machine learning são capazes de fazer previsões futuras considerando valores passados. Neste artigo, vamos discutir como podemos usar modelos clássicos (não específicos para séries temporais) de Inteligência Artificial para superar o mercado.
preview
Teoria das Categorias em MQL5 (Parte 3)

Teoria das Categorias em MQL5 (Parte 3)

A Teoria das Categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta sequência de artigos visa elucidar algumas das suas concepções com o intuito de constituir uma biblioteca aberta e potencializar ainda mais o uso deste notável setor na elaboração de estratégias de negociação.
preview
Rede neural na prática: Mínimos Quadrados

Rede neural na prática: Mínimos Quadrados

Aqui neste artigo, veremos algumas coisas, entre elas: Como muitas vezes fórmulas matemáticas parecem mais complicadas, quando a olhamos, do que quando a implementamos em código. Além deste fato, também será mostrado, como você pode ajustar o quadrante do gráfico, assim como uma coisa sinistra, que pode acontecer no seu código MQL5. Algo que sinceramente não sei como explicar, por não ter entendido. Apesar de mostrar como corrigir no código.
preview
Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos

Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos

No último artigo, iniciamos a análise dos métodos de otimização sem gradiente, e nos familiarizamos com o algoritmo genético. Hoje, continuaremos a discutir o mesmo assunto e também examinaremos outra classe de algoritmos evolutivos.
preview
Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Continuamos a explorar algoritmos de aprendizado por reforço. Todos os algoritmos que analisamos até agora exigiam a criação de uma política de recompensa de tal forma que o agente pudesse avaliar cada uma de suas ações em cada transição de um estado do sistema para outro. No entanto, essa abordagem é bastante artificial. Na prática, existe um intervalo de tempo entre a ação e a recompensa. Neste artigo, proponho que você se familiarize com um algoritmo de aprendizado de modelo capaz de lidar com diferentes atrasos temporais entre a ação e a recompensa.
preview
Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)

Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)

No artigo anterior, nos familiarizamos com o transformador de decisões. Porém, o complexo ambiente estocástico do mercado de moedas não permitiu revelar totalmente o potencial do método apresentado. Hoje, quero apresentar a vocês um algoritmo focado em melhorar o desempenho dos algoritmos em ambientes estocásticos.
preview
Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente

Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente

Veja um exemplo do uso do perceptron como um meio autossuficiente de previsão de preços. Esse artigo aborda conceitos gerais, apresenta um Expert Advisor simples e pronto para uso e os resultados de sua otimização.
preview
Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Continuamos a estudar métodos de aprendizado por reforço. No artigo anterior, nos iniciamos no método de aprendizado Q profundo. Com ele, treinamos um modelo para prever a recompensa imediata dependendo da ação tomada por nós em uma determinada situação. E, em seguida, realizamos uma ação de acordo com nossa política e a recompensa esperada. Mas nem sempre é possível aproximar a função Q ou nem sempre sua aproximação dá o resultado desejado. Nesses casos, os métodos de aproximação são usados não para funções de utilidade, mas, sim, para uma política (estratégia) direta de ações. E é precisamente a esses métodos que o gradiente de política pertence.
preview
Experimentos com redes neurais (Parte 4): Padrões

Experimentos com redes neurais (Parte 4): Padrões

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 07): Dendrogramas

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 07): Dendrogramas

A classificação de dados para análise e previsão é uma área muito diversificada do aprendizado de máquina, que compreende um grande número de abordagens e métodos. Neste artigo, examinaremos uma dessas abordagens, nomeadamente o agrupamento hierárquico aglomerativo (Agglomerative Hierarchical Clustering).
preview
Algoritmos de otimização populacionais: Enxame de partículas (PSO)

Algoritmos de otimização populacionais: Enxame de partículas (PSO)

Neste artigo vamos analisar o popular algoritmo de otimização por enxame de partículas (PSO). Anteriormente, discutimos características importantes de algoritmos de otimização, como convergência, velocidade de convergência, estabilidade, escalabilidade e desenvolvemos uma bancada de testes. Também analisamos um algoritmo simples baseado em geradores de números aleatórios (GNA).
preview
Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
preview
Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Continuamos nossa exploração dos algoritmos de aprendizado por reforço na resolução de problemas em espaços de ação contínua. Neste artigo, apresento o algoritmo Soft Actor-Critic (SAC). A principal vantagem do SAC está em sua capacidade de encontrar políticas ótimas que não apenas maximizam a recompensa esperada, mas também têm a máxima entropia (diversidade) de ações.
preview
Auto-otimização de take-profits e parâmetros do indicador usando SMA e EMA

Auto-otimização de take-profits e parâmetros do indicador usando SMA e EMA

Este artigo apresenta um EA avançado para negociação no mercado Forex, que combina aprendizado de máquina com análise técnica. Ele é projetado para operar ações da Apple por meio de otimização adaptativa, gerenciamento de risco e múltiplas estratégias. Testes com dados históricos têm apresentado resultados promissores, embora também tenham evidenciado retrações significativas, indicando potencial para melhorias adicionais.
preview
Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.
preview
Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Continuamos a estudar algoritmos de aprendizado não supervisionado. E agora proponho discutir as particularidades por trás do uso de autocodificadores para treinar modelos recorrentes.
preview
Algoritmos de otimização populacionais: Algoritmo do macaco (MA)

Algoritmos de otimização populacionais: Algoritmo do macaco (MA)

Neste artigo, estaremos analisando o algoritmo do macaco (Monkey Algorithm, MA). A habilidade destes animais ágeis para superar obstáculos complexos e atingir as partes mais inacessíveis das árvores foi a inspiração para a concepção do MA.
preview
Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

No artigo anterior, nós exploramos o método DDPG, projetado para treinar modelos em espaços de ação contínua. No entanto, como outros métodos de aprendizado Q, ele está sujeito ao problema da sobreavaliação dos valores da função Q. Esse problema geralmente leva eventualmente ao treinamento de um agente com uma estratégia não otimizada. Neste artigo, examinaremos algumas abordagens para superar o problema mencionado.
preview
Representações no domínio da frequência de séries temporais: O espectro de potência

Representações no domínio da frequência de séries temporais: O espectro de potência

Neste artigo, analisaremos os métodos relacionados à análise de séries temporais no domínio da frequência. Ele também se concentrará na utilidade do estudo de funções espectrais de séries temporais na criação de modelos preditivos. Além disso, discutimos algumas perspectivas promissoras para a análise de séries temporais no domínio da frequência usando a transformada discreta de Fourier (DFT).
preview
Anotação de dados na análise de série temporal (Parte 1): Criação de um conjunto de dados com rótulos de tendência usando um gráfico EA

Anotação de dados na análise de série temporal (Parte 1): Criação de um conjunto de dados com rótulos de tendência usando um gráfico EA

Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!
preview
Algoritmo de Evolução do Casco da Tartaruga (Turtle Shell Evolution Algorithm, TSEA)

Algoritmo de Evolução do Casco da Tartaruga (Turtle Shell Evolution Algorithm, TSEA)

Um algoritmo de otimização único, inspirado na evolução do casco da tartaruga. O algoritmo TSEA emula a formação gradual de áreas queratinizadas da pele, que representam as soluções ótimas para o problema. As melhores soluções tornam-se mais "duras" e se aproximam da superfície externa, enquanto as soluções menos bem-sucedidas permanecem "macias" e ficam na parte interna. O algoritmo utiliza a clusterização das soluções com base na qualidade e na distância, permitindo preservar as opções menos bem-sucedidas, garantindo flexibilidade e adaptabilidade.
preview
Teoria das Categorias em MQL5 (Parte 12): Ordem

Teoria das Categorias em MQL5 (Parte 12): Ordem

Este artigo faz parte de uma série sobre a implementação de grafos usando a teoria das categorias no MQL5 e é dedicado à teoria da ordem (Order Theory). Consideraremos dois tipos básicos de ordenação e exploraremos como os conceitos de relação de ordem podem auxiliar os conjuntos monoidais na tomada de decisões de negociação.
preview
Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Continuamos o tópico de busca de regras de associação. No artigo anterior, consideramos os aspectos teóricos desse tipo de problema. No artigo de hoje, ensinarei a implementação do método FP-Growth usando MQL5. Também vamos testá-la com dados reais.
preview
Redes neurais de maneira fácil (Parte 62): uso do transformador de decisões em modelos hierárquicos

Redes neurais de maneira fácil (Parte 62): uso do transformador de decisões em modelos hierárquicos

Nos últimos artigos, exploramos várias formas de usar o método Decision Transformer. Ele permite analisar não só o estado atual, mas também a trajetória de estados anteriores e as ações realizadas neles. Neste artigo, proponho que você conheça uma forma de usar este método em modelos hierárquicos.
preview
Introdução ao MQL5 (Parte 2): Variáveis pré-definidas, funções gerais e operadores de fluxo de controle

Introdução ao MQL5 (Parte 2): Variáveis pré-definidas, funções gerais e operadores de fluxo de controle

Neste artigo, continuamos a explorar a linguagem de programação MQL5. Esta série de artigos não é apenas um material didático, mas sim uma porta de entrada para o mundo da programação. O que os torna especiais? Eu me esforcei para manter a simplicidade nas explicações, tornando conceitos complexos acessíveis a todos. Para obter os melhores resultados, é necessário praticar ativamente tudo o que discutimos. Só assim você obterá o máximo proveito desses artigos.
preview
Teoria das Categorias em MQL5 (Parte 23): uma nova perspectiva sobre a média móvel exponencial dupla

Teoria das Categorias em MQL5 (Parte 23): uma nova perspectiva sobre a média móvel exponencial dupla

Neste artigo, continuamos a explorar indicadores de negociação populares sob uma nova ótica. Vamos processar a composição horizontal de transformações naturais. O melhor indicador para isso é a média móvel exponencial dupla (Double Exponential Moving Average, DEMA).
preview
Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

O algoritmo de simulação de têmpera é uma metaheurística inspirada no processo de têmpera de metais. Neste artigo, realizaremos uma análise detalhada do algoritmo e mostraremos como muitas concepções comuns e mitos em torno deste método de otimização popular e amplamente conhecido podem ser equivocados e incompletos. Anúncio da segunda parte do artigo: "Conheça nosso algoritmo autoral de simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA)!"
preview
Rede neural na prática: Reta Secante

Rede neural na prática: Reta Secante

Como foi explicado na parte teórica. Precisamos usar regressões lineares e derivadas, quando o assunto é rede neural. Mas por que ?!?! O motivo disto, é que a regressão linear é uma das fórmulas mais simples que existe. Basicamente uma regressão linear, é apenas uma função afim. Porém quando falamos em rede neural, não estamos interessados na reta, que a regressão linear cria. Estamos interessados é na equação que gera tal reta. A reta gerada pouco importa. Mas você sabe qual é a equação principal a ser compreendida ?!?! Se não veja este artigo para começar a entender.