
Redes neurais de maneira fácil (Parte 18): Regras de associação
Como continuação desta série, gostaria de apresentar a vocês outro tipo de tarefa dos métodos de aprendizado não supervisionado, em particular a busca de regras de associação. Este tipo de tarefa foi usado pela primeira vez no varejo para analisar cestas de compras. Neste artigo falaremos sobre as possibilidades de utilização de tais algoritmos no trading.

Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I
O algoritmo de simulação de têmpera é uma metaheurística inspirada no processo de têmpera de metais. Neste artigo, realizaremos uma análise detalhada do algoritmo e mostraremos como muitas concepções comuns e mitos em torno deste método de otimização popular e amplamente conhecido podem ser equivocados e incompletos. Anúncio da segunda parte do artigo: "Conheça nosso algoritmo autoral de simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA)!"

Auto-otimização de take-profits e parâmetros do indicador usando SMA e EMA
Este artigo apresenta um EA avançado para negociação no mercado Forex, que combina aprendizado de máquina com análise técnica. Ele é projetado para operar ações da Apple por meio de otimização adaptativa, gerenciamento de risco e múltiplas estratégias. Testes com dados históricos têm apresentado resultados promissores, embora também tenham evidenciado retrações significativas, indicando potencial para melhorias adicionais.

Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação
A negociação com base em probabilidades pode ser comparada a caminhar sobre uma corda bamba - ela requer precisão, equilíbrio e uma compreensão clara do risco envolvido. No mundo do trading, a probabilidade é fundamental. É ela que determina o resultado: sucesso ou fracasso, lucro ou prejuízo. Ao aproveitar as possibilidades da probabilidade, os traders podem tomar decisões mais fundamentadas, gerenciar os riscos de maneira mais eficiente e alcançar seus objetivos financeiros. Não importa se você é um investidor experiente ou um trader iniciante, entender a probabilidade pode ser a chave para desbloquear seu potencial de negociação. Neste artigo, exploraremos o fascinante mundo do trading baseado em probabilidades e mostraremos como levar seu modo de negociar a um nível superior.

Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos
Você sabia que podemos obter mais precisão ao prever certos indicadores técnicos do que ao prever o preço subjacente de um símbolo negociado? Junte-se a nós para explorar como aproveitar essa percepção para melhores estratégias de negociação

Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)
O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.

Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos
Você sabia que podemos obter mais precisão ao prever certos indicadores técnicos do que ao prever o preço subjacente de um símbolo negociado? Junte-se a nós para explorar como aproveitar essa percepção para melhores estratégias de negociação

Redes neurais de maneira fácil (Parte 27): Aprendizado Q profundo (DQN)
Continuamos nosso estudo sobre aprendizado por reforço. E, neste artigo, vamos nos familiarizar com o método de aprendizado Q profundo. Com esse método, a equipe do DeepMind criou um modelo que pode superar um humano ao jogar jogos do Atari. Acho que será útil avaliar as possibilidades de tal tecnologia para resolver problemas de negociação.

Algoritmos de otimização populacionais: Algoritmo do morcego
Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.

Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados
Deseja descobrir uma nova metodologia de negociação que facilite a orientação em mercados complexos e voláteis? Explore os mapas de Kohonen - uma versão inovadora de redes neurais artificiais, capazes de identificar regularidades e tendências ocultas nos dados do mercado. Neste texto, analisaremos a funcionalidade dos mapas de Kohonen e a forma de utilizá-los na elaboração de estratégias de negociação eficazes. Estou convencido de que esta abordagem inédita será do interesse de traders novatos e experientes.

Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada
Continuamos a estudar os algoritmos de aprendizado Q distribuído. Em artigos anteriores, já discutimos os algoritmos de aprendizado Q distribuído e de quantil. No primeiro, aprendemos as probabilidades de determinados intervalos de valores. No segundo, aprendemos intervalos com uma probabilidade específica. Em ambos os algoritmos, utilizamos o conhecimento prévio de uma distribuição e ensinamos a outra. Neste artigo, vamos examinar um algoritmo que permite que o modelo aprenda ambas as distribuições.

Medindo o valor informativo do Indicador
O aprendizado de máquina se tornou uma técnica popular de desenvolvimento de estratégias. Na negociação, tradicionalmente, mais atenção é dada à maximização da lucratividade e à precisão das previsões. Enquanto isso, o processamento de dados usado para construir modelos preditivos permanece na periferia. Neste artigo, discutimos o uso do conceito de entropia para avaliar a adequação de indicadores na construção de modelos preditivos, conforme descrito no livro Testing and Tuning Market Trading Systems escrito por Timothy Masters.

Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5
Neste artigo, continuamos a estudar os fundamentos da programação em MQL5. Vamos abordar arrays, funções personalizadas, pré-processadores e manipulação de eventos. Para maior clareza, cada passo de todas as explicações será acompanhado por código. Esta série de artigos estabelece a base para o estudo do MQL5, com ênfase na explicação de cada linha de código.

Algoritmos de otimização populacional: busca por difusão estocástica (Stochastic Diffusion Search, SDS)
O artigo aborda a busca por difusão estocástica, SDS, um algoritmo de otimização muito poderoso e prático, baseado nos princípios de passeio aleatório. O algoritmo permite encontrar soluções ótimas em espaços multidimensionais complexos, possuindo uma alta velocidade de convergência e a capacidade de evitar extremos locais.

Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5
Continuamos a estudar o método de agrupamento. Neste artigo, criaremos uma nova classe CKmeans para implementar um dos métodos de agrupamento k-médias mais comuns. Com base nos resultados dos testes, podemos concluir que o modelo é capaz de identificar cerca de 500 padrões.

Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)
Um dos principais desafios do aprendizado por reforço é a exploração do ambiente. Anteriormente, já nos iniciamos no método de exploração baseado na curiosidade interna. E hoje proponho considerar outro algoritmo, o de exploração por desacordo.

Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos
Nos mercados de forex, é muito desafiador prever a tendência futura sem ter uma ideia do passado. Poucos modelos de machine learning são capazes de fazer previsões futuras considerando valores passados. Neste artigo, vamos discutir como podemos usar modelos clássicos (não específicos para séries temporais) de Inteligência Artificial para superar o mercado.

Algoritmos de otimização populacionais: Colônia artificial de abelhas (Artificial Bee Colony, ABC)
Hoje estudaremos o algoritmo de colônia artificial de abelhas. Complementaremos nosso conhecimento com novos princípios para estudar espaços funcionais. E neste artigo falarei sobre minha interpretação da versão clássica do algoritmo.

Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado
Nesta série de artigos, já mencionamos a transferência de aprendizado mais de uma vez. Mas até agora o assunto não foi além das menções. Sugiro preencher essa lacuna e dar uma olhada mais de perto na transferência de aprendizado.

Rede neural na prática: Mínimos Quadrados
Aqui neste artigo, veremos algumas coisas, entre elas: Como muitas vezes fórmulas matemáticas parecem mais complicadas, quando a olhamos, do que quando a implementamos em código. Além deste fato, também será mostrado, como você pode ajustar o quadrante do gráfico, assim como uma coisa sinistra, que pode acontecer no seu código MQL5. Algo que sinceramente não sei como explicar, por não ter entendido. Apesar de mostrar como corrigir no código.

Sistema de negociação de arbitragem de alta frequência em Python usando MetaTrader 5
Criamos um sistema de arbitragem legal aos olhos das corretoras, que gera milhares de preços sintéticos no mercado Forex, os analisa e negocia com sucesso e de forma lucrativa.

Teoria das Categorias em MQL5 (Parte 3)
A Teoria das Categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta sequência de artigos visa elucidar algumas das suas concepções com o intuito de constituir uma biblioteca aberta e potencializar ainda mais o uso deste notável setor na elaboração de estratégias de negociação.

Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos
No último artigo, iniciamos a análise dos métodos de otimização sem gradiente, e nos familiarizamos com o algoritmo genético. Hoje, continuaremos a discutir o mesmo assunto e também examinaremos outra classe de algoritmos evolutivos.

Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)
No artigo anterior, nos familiarizamos com o transformador de decisões. Porém, o complexo ambiente estocástico do mercado de moedas não permitiu revelar totalmente o potencial do método apresentado. Hoje, quero apresentar a vocês um algoritmo focado em melhorar o desempenho dos algoritmos em ambientes estocásticos.

Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca
Continuamos a explorar algoritmos de aprendizado por reforço. Todos os algoritmos que analisamos até agora exigiam a criação de uma política de recompensa de tal forma que o agente pudesse avaliar cada uma de suas ações em cada transição de um estado do sistema para outro. No entanto, essa abordagem é bastante artificial. Na prática, existe um intervalo de tempo entre a ação e a recompensa. Neste artigo, proponho que você se familiarize com um algoritmo de aprendizado de modelo capaz de lidar com diferentes atrasos temporais entre a ação e a recompensa.

Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente
Veja um exemplo do uso do perceptron como um meio autossuficiente de previsão de preços. Esse artigo aborda conceitos gerais, apresenta um Expert Advisor simples e pronto para uso e os resultados de sua otimização.

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 07): Dendrogramas
A classificação de dados para análise e previsão é uma área muito diversificada do aprendizado de máquina, que compreende um grande número de abordagens e métodos. Neste artigo, examinaremos uma dessas abordagens, nomeadamente o agrupamento hierárquico aglomerativo (Agglomerative Hierarchical Clustering).

Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política
Continuamos a estudar métodos de aprendizado por reforço. No artigo anterior, nos iniciamos no método de aprendizado Q profundo. Com ele, treinamos um modelo para prever a recompensa imediata dependendo da ação tomada por nós em uma determinada situação. E, em seguida, realizamos uma ação de acordo com nossa política e a recompensa esperada. Mas nem sempre é possível aproximar a função Q ou nem sempre sua aproximação dá o resultado desejado. Nesses casos, os métodos de aproximação são usados não para funções de utilidade, mas, sim, para uma política (estratégia) direta de ações. E é precisamente a esses métodos que o gradiente de política pertence.

Algoritmos de otimização populacionais: Enxame de partículas (PSO)
Neste artigo vamos analisar o popular algoritmo de otimização por enxame de partículas (PSO). Anteriormente, discutimos características importantes de algoritmos de otimização, como convergência, velocidade de convergência, estabilidade, escalabilidade e desenvolvemos uma bancada de testes. Também analisamos um algoritmo simples baseado em geradores de números aleatórios (GNA).

Experimentos com redes neurais (Parte 4): Padrões
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.

Introdução ao MQL5 (Parte 2): Variáveis pré-definidas, funções gerais e operadores de fluxo de controle
Neste artigo, continuamos a explorar a linguagem de programação MQL5. Esta série de artigos não é apenas um material didático, mas sim uma porta de entrada para o mundo da programação. O que os torna especiais? Eu me esforcei para manter a simplicidade nas explicações, tornando conceitos complexos acessíveis a todos. Para obter os melhores resultados, é necessário praticar ativamente tudo o que discutimos. Só assim você obterá o máximo proveito desses artigos.

Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)
Continuamos nossa exploração dos algoritmos de aprendizado por reforço na resolução de problemas em espaços de ação contínua. Neste artigo, apresento o algoritmo Soft Actor-Critic (SAC). A principal vantagem do SAC está em sua capacidade de encontrar políticas ótimas que não apenas maximizam a recompensa esperada, mas também têm a máxima entropia (diversidade) de ações.

Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.

Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)
Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.

Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes
Continuamos a estudar algoritmos de aprendizado não supervisionado. E agora proponho discutir as particularidades por trás do uso de autocodificadores para treinar modelos recorrentes.

Algoritmos de otimização populacionais: Algoritmo do macaco (MA)
Neste artigo, estaremos analisando o algoritmo do macaco (Monkey Algorithm, MA). A habilidade destes animais ágeis para superar obstáculos complexos e atingir as partes mais inacessíveis das árvores foi a inspiração para a concepção do MA.

Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q
No artigo anterior, nós exploramos o método DDPG, projetado para treinar modelos em espaços de ação contínua. No entanto, como outros métodos de aprendizado Q, ele está sujeito ao problema da sobreavaliação dos valores da função Q. Esse problema geralmente leva eventualmente ao treinamento de um agente com uma estratégia não otimizada. Neste artigo, examinaremos algumas abordagens para superar o problema mencionado.

Representações no domínio da frequência de séries temporais: O espectro de potência
Neste artigo, analisaremos os métodos relacionados à análise de séries temporais no domínio da frequência. Ele também se concentrará na utilidade do estudo de funções espectrais de séries temporais na criação de modelos preditivos. Além disso, discutimos algumas perspectivas promissoras para a análise de séries temporais no domínio da frequência usando a transformada discreta de Fourier (DFT).

Algoritmo de Evolução do Casco da Tartaruga (Turtle Shell Evolution Algorithm, TSEA)
Um algoritmo de otimização único, inspirado na evolução do casco da tartaruga. O algoritmo TSEA emula a formação gradual de áreas queratinizadas da pele, que representam as soluções ótimas para o problema. As melhores soluções tornam-se mais "duras" e se aproximam da superfície externa, enquanto as soluções menos bem-sucedidas permanecem "macias" e ficam na parte interna. O algoritmo utiliza a clusterização das soluções com base na qualidade e na distância, permitindo preservar as opções menos bem-sucedidas, garantindo flexibilidade e adaptabilidade.

Teoria das Categorias em MQL5 (Parte 12): Ordem
Este artigo faz parte de uma série sobre a implementação de grafos usando a teoria das categorias no MQL5 e é dedicado à teoria da ordem (Order Theory). Consideraremos dois tipos básicos de ordenação e exploraremos como os conceitos de relação de ordem podem auxiliar os conjuntos monoidais na tomada de decisões de negociação.