
Reamostragem avançada e seleção de modelos CatBoost pelo método de força bruta
Este artigo descreve uma das possíveis abordagens para a transformação de dados com o objetivo de melhorar a generalização do modelo, ele também discute a amostragem e seleção dos modelos CatBoost.

Estratégia de Negociação do SP500 em MQL5 para Iniciantes
Descubra como aproveitar o MQL5 para prever o S&P 500 com precisão, misturando a análise técnica clássica para maior estabilidade e combinando algoritmos com princípios testados pelo tempo para obter insights robustos do mercado.

Ciência de Dados e Aprendizado de Máquina — Redes Neurais (Parte 01): Entendendo as Redes Neurais Feed Forward
Muitas pessoas as amam, mas apenas alguns entendem todas as operações por trás das Redes Neurais. Neste artigo, eu tentarei explicar tudo o que acontece por trás dos bastidores de um perceptron multicamadas feed-forward de maneira simples.

Matrizes e vetores em MQL5: funções de ativação
Neste artigo, descrevemos apenas um aspecto do aprendizado de máquina, em particular as funções de ativação. Em redes neurais artificiais, a função de ativação de neurônio calcula o valor de um sinal de saída com base nos valores de um sinal de entrada ou de um conjunto de sinais de entrada. Vamos mergulhar nos detalhes internos do processo.

Algoritmos de otimização populacionais: Otimizador lobo-cinzento (GWO)
Vamos falar sobre um dos algoritmos de otimização mais recentes e modernos: o "Packs of grey wolves" (manada de lobos-cinzentos). Devido ao seu comportamento distinto em funções de teste, este algoritmo se torna um dos mais interessantes em comparação com outros considerados anteriormente. Ele é um dos principais candidatos para treinamento de redes neurais e para otimizar funções suaves com muitas variáveis.

Redes Neurais de Maneira Fácil (Parte 11): Uma visão sobre a GPT
Talvez um dos modelos mais avançados entre as redes neurais de linguagem atualmente existentes seja a GPT-3, cuja variante máxima contém 175 bilhões de parâmetros. Claro, nós não vamos criar tal monstro em nossos PCs domésticos. No entanto, nós podemos ver quais soluções arquitetônicas podem ser usadas em nosso trabalho e como nós podemos nos beneficiar delas.

Redes neurais de maneira fácil (Parte 51): ator-crítico comportamental (BAC)
Nos últimos dois artigos, discutimos o algoritmo Soft Actor-Critic, que incorpora regularização de entropia na função de recompensa. Essa abordagem permite equilibrar a exploração do ambiente e a exploração do modelo, mas é aplicável apenas a modelos estocásticos. Neste artigo, exploraremos uma abordagem alternativa que é aplicável tanto a modelos estocásticos quanto determinísticos.

Redes neurais de maneira fácil (Parte 29): Algoritmo ator-crítico de vantagem (Advantage actor-critic)
Nos artigos anteriores desta série, conhecemos 2 algoritmos de aprendizado por reforço. Cada um deles tem suas próprias vantagens e desvantagens. Como costuma acontecer quando nos deparamos com esses casos, surge a ideia de combinar os dois métodos em um algoritmo que incorpore o melhor dos dois. E assim compensar as deficiências de cada um deles. Falaremos sobre tal combinação de métodos neste artigo.

Gradient boosting no aprendizado de máquina transdutivo e ativo
Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em seu arsenal de modelos de aprendizado de máquina. A transdução foi introduzida por Vladimir Vapnik, que é o coinventor da Support-Vector Machine (SVM).

Redes neurais de maneira fácil (Parte 87): Segmentação de séries temporais
A previsão desempenha um papel importante na análise de séries temporais. No novo artigo, falaremos sobre as vantagens da segmentação de séries temporais.

Ciência de Dados e Aprendizado de Máquina (Parte 05): Árvores de Decisão
As árvores de decisão imitam a maneira como os humanos pensam para classificar os dados. Vamos ver como construir árvores e usá-las para classificar e prever alguns dados. O principal objetivo do algoritmo de árvores de decisão é separar os dados impuros em puros ou próximos a nós.

Ciência de Dados e Aprendizado de Máquina (Parte 07): Regressão Polinomial
Ao contrário da regressão linear, a regressão polinomial é um modelo flexível destinado a performar melhor em tarefas que o modelo de regressão linear não poderia lidar. Vamos descobrir como fazer modelos polinomiais em MQL5 e tirar algo positivo disso.

Redes neurais de maneira fácil (Parte 43): Dominando habilidades sem função de recompensa
O problema com o aprendizado por reforço é a necessidade de definir uma função de recompensa, que pode ser complexa ou difícil de formular, porém abordagens baseadas no tipo de ação e na exploração do ambiente que permitem que as habilidades sejam aprendidas sem uma função de recompensa explícita estão sendo exploradas para resolver esse problema.

Uso de modelos ONNX em MQL5
O ONNX (Open Neural Network Exchange) é um padrão aberto para a representação de modelos de redes neurais. Neste artigo, consideraremos o processo de criação do modelo SNN-LSTM para previsão de séries temporais financeiras e o uso do modelo ONNX criado em um Expert Advisor MQL5.

Algoritmos de otimização populacionais: Algoritmo de otimização de cuco (COA)
O próximo algoritmo que abordaremos será a otimização de busca de cuco usando voos Levy. Este é um dos algoritmos de otimização mais recentes e um novo líder na tabela de classificação.

Ciência de Dados e Aprendizado de Máquina (Parte 02): Regressão Logística
A classificação de dados é uma coisa crucial para um algotrader e um programador. Neste artigo, nós vamos nos concentrar em um dos algoritmos de classificação logística que provavelmente podem nos ajudar a identificar os Sims ou Nãos, as Altas e Baixas, Compras e Vendas.

Ciência de Dados e Aprendizado de Máquina (Parte 04): Previsão de um crash no mercado de ações
Neste artigo, eu tentarei usar nosso modelo logístico para prever o crash do mercado de ações com base nos fundamentos da economia dos EUA, nos concentraremos nas ações do NETFLIX e da APPLE, usando os crashes anteriores do mercado de 2019 e 2020, vamos ver como nosso modelo se comportará nas atuais desgraças e tristezas.

Teoria das Categorias em MQL5 (Parte 1)
A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.

Ciência de Dados e Aprendizado de Máquina (Parte 06): Gradiente Descendente
O gradiente descendente desempenha um papel significativo no treinamento das redes neurais e muitos algoritmos de aprendizado de máquina. Ele é um algoritmo rápido e inteligente, apesar do seu trabalho impressionante, ele ainda é mal interpretado por muitos cientistas de dados, vamos ver do que ele se trata.

Algoritmos de otimização populacionais: algoritmo de vaga-lumes
Vamos considerar o método de otimização de vaga-lumes (Firefly Algorithm, FA). Esse algoritmo evoluiu de um método desconhecido por meio de modificações para se tornar um líder real na tabela de classificação.

Integrando modelos de ML ao Testador de estratégias (Parte 3): Gerenciamento de Arquivos CSV(II)
Este artigo fornece uma visão detalhada sobre como construir uma classe em MQL5 para gerenciamento eficiente de arquivos CSV. Ele explica como os métodos de abertura, escrita, leitura e conversão de dados são implementados e como eles podem ser utilizados para armazenar e carregar dados. Além disso, o artigo também discute as limitações e considerações importantes ao usar essa classe. É uma leitura valiosa para aqueles interessados em aprender a trabalhar com arquivos CSV em MQL5.

Introdução ao MQL5 (Parte 7): Guia para Iniciantes na Criação de Expert Advisors e Utilização de Código Gerado por IA no MQL5
Descubra o guia definitivo para iniciantes na criação de Expert Advisors (EAs) com MQL5 em nosso artigo abrangente. Aprenda passo a passo como construir EAs utilizando pseudocódigo e aproveite o poder do código gerado por IA. Seja você novo no trading algorítmico ou esteja buscando aprimorar suas habilidades, este guia oferece um caminho claro para criar EAs eficazes.

Redes neurais de maneira fácil (Parte 33): regressão quantílica em aprendizado Q distribuído,
Continuamos a estudar o aprendizado Q distribuído e hoje veremos essa abordagem de outro ponto de vista. Falaremos sobre a possibilidade de usar regressão quantílica para resolver o problema de previsão de movimentos de preços.

Experiências com redes neurais (Parte 2): Otimização inteligente de redes neurais
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.

Redes neurais de maneira fácil (Parte 83): Transformador espaciotemporal de atenção contínua (Conformer)
O algoritmo Conformer, apresentado aqui, foi desenvolvido para prever o tempo, que, em termos de variabilidade e imprevisibilidade, pode ser comparado aos mercados financeiros. O Conformer é um método complexo que combina as vantagens dos modelos de atenção e das equações diferenciais ordinárias.

Ciência de Dados e Aprendizado de Máquina (Parte 13): Analisando o mercado financeiro usando a análise de componentes principais (PCA)
Vamos tentar melhorar qualitativamente nossa análise dos mercados financeiros usando a análise de componentes principais (PCA). Aprenderemos como essa técnica pode ajudar a identificar padrões ocultos nos dados, identificar tendências de mercado ocultas e otimizar estratégias de investimento. Neste artigo, veremos como o PCA oferece uma nova perspectiva para a análise de dados financeiros complexos, ajudando-nos a ver informações que não percebemos usando abordagens tradicionais. Veremos se sua aplicação aos dados do mercado financeiro proporciona uma vantagem sobre a concorrência e nos ajuda a ficar um passo à frente.

Ciência de Dados e Aprendizado de Máquina (Parte 12): É possível ter sucesso no mercado com redes neurais de autoaprendizagem?
Certamente muitas pessoas estão cansadas de tentar constantemente prever o mercado de ações. Você gostaria de ter uma bola de cristal que o ajudasse a tomar melhores decisões de investimento? As redes neurais autoaprendentes podem ser a solução para isso. Neste artigo, vamos ver se esses algoritmos poderosos podem ajudar a surfar na onda e ser mais espertos que o mercado de ações. Ao analisar grandes volumes de dados e identificar padrões, as redes neurais autoaprendentes podem fazer previsões que geralmente são mais precisas do que as previsões dos traders. Vamos descobrir se essas tecnologias avançadas podem ser utilizadas para tomar decisões de investimento mais inteligentes e obter mais lucros.

Experiências com redes neurais (Parte 1): Lembrando a geometria
As redes neurais são tudo para nós. Vamos ver se isso é verdade na prática. Para tal, vamos fazer experiências e adotar abordagens não-convencionais. Vamos escrever também um sistema de negociação lucrativo. A explicação vai ser simples.

Integrando modelos de ML ao Testador de Estratégias (Conclusão): Implementação de um Modelo de Regressão para Previsão de Preço
Este artigo descreve a implementação de um modelo de regressão de árvores de decisão para prever preços de ativos financeiros. Foram realizadas etapas de preparação dos dados, treinamento e avaliação do modelo, com ajustes e otimizações. No entanto, é importante destacar que o modelo é apenas um estudo e não deve ser usado em negociações reais.

Introdução ao MQL5 (Parte 1): Um guia para principiantes em algotrading
Este artigo serve como uma introdução à programação em MQL5 para novatos, abrindo portas para o empolgante mundo da negociação algorítmica. Aqui, você vai descobrir os princípios básicos do MQL5, a linguagem de programação usada para desenvolver estratégias de negociação no MetaTrader 5, que facilita a entrada no universo da negociação automatizada. Abrangendo desde a compreensão dos conceitos iniciais até os primeiros passos na programação, este texto é projetado para desbloquear as possibilidades da negociação algorítmica para todos os leitores, incluindo aqueles sem nenhuma experiência prévia em programação. Espero que aprecie esta incursão pelo mundo do trading com MQL5.

Avaliando modelos ONNX usando métricas de regressão
A regressão é uma tarefa de prever um valor real a partir de um exemplo não rotulado. Para avaliar a precisão das previsões de modelos de regressão, são utilizadas as chamadas métricas de regressão.

Redes neurais de retropropagação em matrizes MQL5
Este artigo trata da teoria e prática do uso do algoritmo de retropropagação de erros no MQL5 através de matrizes. Oferecemos classes prontas e exemplos de scripts, indicadores e EAs.

Redes neurais de maneira fácil (Parte 26): aprendizado por reforço
Continuamos a estudar métodos de aprendizado de máquina. Com este artigo, começamos outro grande tópico chamado aprendizado por reforço. Essa abordagem permite que os modelos estabeleçam certas estratégias para resolver as tarefas. E esperamos que essa propriedade inerente ao aprendizado de reforço abra novos horizontes para a construção de estratégias de negociação.

Redes neurais de maneira fácil (Parte 88): Codificador denso de séries temporais (TiDE)
O desejo de obter previsões mais precisas leva os pesquisadores a complicar os modelos de previsão. Isso, por sua vez, aumenta os custos de treinamento e manutenção do modelo. Mas será que isso sempre é justificado? Neste artigo, proponho que você conheça um algoritmo que utiliza a simplicidade e a velocidade dos modelos lineares, e demonstra resultados no nível dos melhores com uma arquitetura mais complexa.

Redes neurais de maneira fácil (Parte 17): Redução de dimensionalidade
Continuamos a estudar modelos de inteligência artificial, em particular, algoritmos de aprendizado não supervisionados. Já nos encontramos com um dos algoritmos de agrupamento. E neste artigo quero compartilhar com vocês outra maneira de resolver os problemas de redução de dimensionalidade.

Fatorando Matrizes — O Básico
Como o intuito aqui é ser didático. Vou manter a coisa no seu padrão mais simples. Ou seja, iremos implementar apenas e somente o que será preciso. A multiplicação de matrizes. E você verá que isto será o suficiente para simular a multiplicação de uma matriz por um escalar. A grande dificuldade que muita gente tem em implementar um código usando fatoração de matrizes, é que diferente de uma fatoração escalar, onde em quase todos os casos a ordem dos fatores não altera o resultado. Quando se usa matrizes, a coisa não é bem assim.

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 3): Criando jogadas automáticas e Scripts de Teste em MQL5
Este artigo explora a implementação de jogadas automáticas no jogo da velha Python, integrado com funções MQL5 e testes unitários. O objetivo é aprimorar a interatividade do jogo e garantir a robustez do sistema através de testes MQL5. Ele aborda desde o desenvolvimento da lógica de jogo até a integração e testes práticos, culminando na criação de um ambiente de jogo dinâmico e um sistema integrado confiável.

Redes neurais de maneira fácil (Parte 85): previsão multidimensional de séries temporais
Neste artigo, quero apresentar a vocês um novo método abrangente de previsão de séries temporais, que combina harmoniosamente as vantagens dos modelos lineares e dos transformers.

Criação de Previsões de Séries Temporais Usando Redes Neurais LSTM: Normalizando Preço e Tokenizando o Tempo
Este artigo descreve uma estratégia simples para normalizar os dados de mercado usando o intervalo diário e treinar uma rede neural para aprimorar as previsões de mercado. Os modelos desenvolvidos podem ser utilizados em conjunto com estruturas de análise técnica existentes ou de forma independente para auxiliar na previsão da direção geral do mercado. A estrutura delineada neste artigo pode ser ainda mais refinada por qualquer analista técnico para desenvolver modelos adequados para estratégias de negociação manuais e automatizadas.

Ciência de dados e Aprendizado de Máquina (parte 09): O algoritmo K-vizinhos mais próximos (KNN)
Este é um algoritmo preguiçoso que não aprende com o conjunto de dados de treinamento, ele armazena o conjunto de dados e age imediatamente quando ele recebe uma nova amostra. Por mais simples que ele seja, ele é usado em uma variedade de aplicações do mundo real