Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
O Problema da Discordância: Mergulhando Mais Fundo na Complexidade da Explicabilidade em IA

O Problema da Discordância: Mergulhando Mais Fundo na Complexidade da Explicabilidade em IA

Neste artigo, exploramos o desafio de entender como a IA funciona. Modelos de IA frequentemente tomam decisões de maneiras que são difíceis de explicar, levando ao que é conhecido como o "problema da discordância". Esta questão é fundamental para tornar a IA mais transparente e confiável.
preview
Trabalho com modelos ONNX nos formatos float16 e float8

Trabalho com modelos ONNX nos formatos float16 e float8

Os formatos de dados utilizados para representar modelos de aprendizado de máquina desempenham um papel fundamental em sua eficiência. Nos últimos anos, surgiram vários novos tipos de dados desenvolvidos especificamente para trabalhar com modelos de aprendizado profundo. Neste artigo, vamos focar em dois novos formatos de dados que se tornaram amplamente utilizados nos modelos modernos.
preview
Classe base de algoritmos populacionais como alicerce para otimização eficiente

Classe base de algoritmos populacionais como alicerce para otimização eficiente

Uma tentativa única de pesquisa para combinar uma série de algoritmos populacionais em uma única classe com o objetivo de simplificar a aplicação dos métodos de otimização. Essa abordagem não apenas abre possibilidades para o desenvolvimento de novos algoritmos, incluindo variantes híbridas, mas também estabelece um banco de testes básico universal. Este banco se torna uma ferramenta chave para a escolha do algoritmo ideal, dependendo da tarefa específica em questão.
preview
Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)

Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)

Neste artigo, proponho olhar a questão da construção de uma estratégia de trading de outra perspectiva. Em vez de prever o movimento futuro dos preços, tentaremos construir um sistema de trading baseado na análise de dados históricos.
preview
Ciência de dados e aprendizado de máquina (Parte 20): Escolha entre LDA e PCA em tarefas de algotrading no MQL5

Ciência de dados e aprendizado de máquina (Parte 20): Escolha entre LDA e PCA em tarefas de algotrading no MQL5

Neste artigo, vamos considerar métodos de redução de dimensionalidade e sua aplicação no ambiente de trading MQL5. Especificamente, vamos estudar as nuances da Análise Discriminante Linear (LDA) e da Análise de Componentes Principais (PCA), bem como analisar sua influência no desenvolvimento de estratégias e na análise de mercado.
preview
Introdução ao MQL5 (Parte 5): Um Guia para Iniciantes sobre Funções de Array em MQL5

Introdução ao MQL5 (Parte 5): Um Guia para Iniciantes sobre Funções de Array em MQL5

Explore o mundo dos arrays em MQL5 na Parte 5, projetado para iniciantes absolutos. Simplificando conceitos complexos de codificação, este artigo foca na clareza e inclusão. Junte-se à nossa comunidade de aprendizes, onde perguntas são bem-vindas e conhecimento é compartilhado!
preview
Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

AdaBoost, um poderoso algoritmo de boosting projetado para elevar o desempenho dos seus modelos de IA. AdaBoost, abreviação de Adaptive Boosting, é uma técnica sofisticada de aprendizado em conjunto que integra perfeitamente aprendizes fracos, aprimorando sua força preditiva coletiva.
preview
Inferência causal em problemas de classificação de séries temporais

Inferência causal em problemas de classificação de séries temporais

Neste artigo, examinaremos a teoria da inferência causal usando aprendizado de máquina, bem como a implementação de uma abordagem personalizada em Python. A inferência causal e o pensamento causal têm suas raízes na filosofia e psicologia e desempenham um papel importante na nossa compreensão da realidade.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas

As paredes numéricas (Number Walls) são uma variante do registrador de deslocamento com realimentação linear (Linear Shift Back Registers), que avalia previamente sequências para previsibilidade verificando a convergência. Vamos ver como essas ideias podem ser usadas no MQL5.
preview
Redes neurais de maneira fácil (Parte 77): Cross-Covariance Transformer (XCiT)

Redes neurais de maneira fácil (Parte 77): Cross-Covariance Transformer (XCiT)

Em nossos modelos, frequentemente usamos vários algoritmos de atenção. E, provavelmente, usamos Transformadores com mais frequência. A principal desvantagem deles é a exigência de recursos. Neste artigo, quero apresentar um algoritmo que ajuda a reduzir os custos computacionais sem perda de qualidade.
preview
Rede neural na prática: Pseudo Inversa (II)

Rede neural na prática: Pseudo Inversa (II)

Por conta do fato, de que estes artigos visam a didática. E não para mostrar como implementar esta ou aquela funcionalidade. Vamos fazer algo um pouco diferente aqui. Em vez de mostrar como implementar a fatoração para conseguir a inversa de uma matriz. Vamos focar em como fatorar a pseudo inversa. O motivo é que não faz sentido, mostrar como fatorar algo de forma genérica. Se podemos fazer a mesma coisa de forma especializada. E melhor, será algo que você, conseguirá entender muito mais do por que as coisas serem como são. Então vamos ver por que um hardware aparece depois de um tempo, em substituição a um software.
preview
Introdução ao MQL5 (Parte 4): Estruturas, classes e funções de tempo

Introdução ao MQL5 (Parte 4): Estruturas, classes e funções de tempo

Nesta série, continuamos a desvendar os segredos da programação. No novo artigo, vamos estudar as bases das estruturas, classes e funções de tempo e adquirir novas habilidades para programação eficiente. Este guia pode ser útil não apenas para iniciantes, mas também para desenvolvedores experientes, pois simplifica conceitos complexos, fornecendo informações valiosas para dominar o MQL5. Continue aprendendo coisas novas, aperfeiçoe suas habilidades de programação e domine o mundo da negociação algorítmica.
preview
Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)

Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)

Neste artigo, continuamos o tema de previsão do movimento de preços. E convido você a conhecer a arquitetura do Multi-future Transformer. A ideia principal é decompor a distribuição multimodal do futuro em várias distribuições unimodais, permitindo modelar eficientemente diversos modos de interação entre os agentes na cena.
preview
Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias

Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias

Os modelos que estamos criando estão se tornando cada vez maiores e mais complexos. Com isso, aumentam os custos não apenas para o treinamento, mas também para a operação. Além disso, muitas vezes nos deparamos com situações em que o tempo de tomada de decisão é crítico. E, por isso, voltamos nossa atenção para métodos de otimização de desempenho dos modelos sem perder qualidade.
preview
Modelos de regressão da biblioteca Scikit-learn e sua exportação para ONNX

Modelos de regressão da biblioteca Scikit-learn e sua exportação para ONNX

Neste artigo, exploraremos a aplicação de modelos de regressão do pacote Scikit-learn, tentaremos convertê-los para o formato ONNX e usaremos os modelos resultantes em programas MQL5. Além disso, compararemos a precisão dos modelos originais com suas versões ONNX para ambas as precisões float e double. Além disso, examinaremos a representação ONNX dos modelos de regressão, com o objetivo de fornecer uma melhor compreensão de sua estrutura interna e princípios operacionais.
preview
Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)

Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)

Continuação do artigo anterior como desenvolvimento da ideia de grupos sociais. No novo artigo, explora-se a evolução dos grupos sociais utilizando algoritmos de movimentação e memória. Os resultados ajudarão a entender a evolução dos sistemas sociais e aplicá-los na otimização e busca de soluções.
preview
Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Neste artigo, consideraremos o princípio de construção de algoritmos multipopulacionais e, como exemplo desse tipo de algoritmos, analisaremos a Evolução de Grupos Sociais (ESG), um novo algoritmo autoral. Analisaremos os conceitos principais, os mecanismos de interação entre populações e as vantagens desse algoritmo, bem como examinaremos seu desempenho em tarefas de otimização.
preview
Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias

Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias

Proponho a você conhecer um método bastante eficaz de previsão de trajetórias multiagentes, que é capaz de se adaptar a diferentes condições ambientais.
preview
Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Neste artigo, continuamos a estudar os fundamentos da programação em MQL5. Vamos abordar arrays, funções personalizadas, pré-processadores e manipulação de eventos. Para maior clareza, cada passo de todas as explicações será acompanhado por código. Esta série de artigos estabelece a base para o estudo do MQL5, com ênfase na explicação de cada linha de código.
preview
Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço

Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço

Continuamos a análise dos algoritmos de aprendizado de modelos de previsão de trajetórias. E neste artigo, proponho que você conheça o método chamado “AutoBots”.
preview
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Neste artigo, vamos realizar um estudo sobre vários métodos aplicados em algoritmos genéticos binários e outros algoritmos populacionais. Vamos examinar os componentes principais do algoritmo, como seleção, crossover e mutação, bem como seu impacto no processo de otimização. Além disso, vamos explorar as formas de representação de informações e seu impacto nos resultados de otimização.
preview
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II

Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II

Neste artigo, vamos considerar o algoritmo genético binário (BGA), que modela os processos naturais que ocorrem no material genético dos seres vivos na natureza.
preview
Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

O projeto envolve o uso de Python para previsão em mercados financeiros baseada em aprendizado profundo. Nós exploraremos as nuances do teste de desempenho do modelo usando indicadores-chave como erro absoluto médio (MAE), erro quadrático médio (MSE) e R-quadrado (R2), além de aprender a integrar tudo isso em um arquivo executável. Também criaremos um arquivo de modelo ONNX e um EA (Expert Advisor).
preview
Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído

Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído

A qualidade da previsão de estados futuros desempenha um papel importante no método Goal-Conditioned Predictive Coding, com o qual nos familiarizamos no artigo anterior. Neste artigo, quero apresentar a vocês um algoritmo capaz de aumentar significativamente a qualidade da previsão em ambientes estocásticos, que incluem os mercados financeiros.
preview
Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX

Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX

Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais, que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A anotação de dados direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, aumentar a precisão do modelo e até ajudar o modelo a alcançar um salto qualitativo!
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 10): RBM não convencional

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 10): RBM não convencional

As máquinas de Boltzmann restritas (Restrictive Boltzmann Machines, RBM) são, em um nível básico, uma rede neural de duas camadas capaz de realizar classificação não supervisionada através da redução de dimensionalidade. Vamos usar seus princípios básicos e ver o que acontece se a desenharmos e a treinarmos de forma não convencional. Será que conseguiremos obter um filtro de sinais útil?
preview
Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado

Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado

A decomposição em valores singulares truncada (TruncatedSVD) e a fatoração de matriz não negativa (NMF) são métodos de redução de dimensionalidade. Ambos podem ser bastante úteis ao trabalhar com estratégias de negociação baseadas na análise de dados. Neste artigo, analisamos a aplicabilidade desses métodos no processamento de dados complexos de mercado, incluindo suas capacidades de redução de dimensionalidade para otimizar a análise quantitativa nos mercados financeiros.
preview
Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket

Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket

Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais que podem criar dados compatíveis com a maioria dos modelos de inteligência artificial (IA). A anotação precisa dos dados pode tornar o modelo de IA treinado mais alinhado com os objetivos e tarefas dos usuários, aumentar a precisão do modelo e até ajudar a alcançar uma melhoria significativa na qualidade!
preview
Rede neural na prática: Pseudo Inversa (I)

Rede neural na prática: Pseudo Inversa (I)

Aqui, vamos começar a ver como podermos implementar, usando MQL5 puro, o cálculo de pseudo inversa. Apesar do código que será visto, será de fato bem mais complicado, para os iniciantes, do que eu de fato gostaria de apresentar. Ainda estou pensando em como o explicar de forma simples. Veja isto como uma oportunidade de estudar um o código pouco comum. Então vá com calma. Sem pressa e correria. Mesmo que ele não vise ser eficiente e de rápida execução. O objetivo é ser o mais didático possível.
preview
Introdução ao MQL5 (Parte 2): Variáveis pré-definidas, funções gerais e operadores de fluxo de controle

Introdução ao MQL5 (Parte 2): Variáveis pré-definidas, funções gerais e operadores de fluxo de controle

Neste artigo, continuamos a explorar a linguagem de programação MQL5. Esta série de artigos não é apenas um material didático, mas sim uma porta de entrada para o mundo da programação. O que os torna especiais? Eu me esforcei para manter a simplicidade nas explicações, tornando conceitos complexos acessíveis a todos. Para obter os melhores resultados, é necessário praticar ativamente tudo o que discutimos. Só assim você obterá o máximo proveito desses artigos.
preview
Algoritmos de otimização populacional: sistema imune micro-artificial (Micro Artificial Immune System, Micro-AIS)

Algoritmos de otimização populacional: sistema imune micro-artificial (Micro Artificial Immune System, Micro-AIS)

Este artigo fala sobre um método de otimização baseado nos princípios de funcionamento do sistema imunológico do organismo — Micro Artificial Immune System (Micro-AIS) — uma modificação do AIS. O Micro-AIS utiliza um modelo mais simples do sistema imunológico e operações mais simples de processamento de informações imunológicas. O artigo também aborda as vantagens e desvantagens do Micro-AIS em comparação com o AIS tradicional.
preview
Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)

Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)

Nos trabalhos anteriores, conhecemos o método Decision Transformer e vários algoritmos derivados dele. Experimentamos com diferentes métodos de definição de objetivos. Durante os experimentos, trabalhamos com diferentes maneiras de definir objetivos, mas o estudo da trajetória já percorrida pelo modelo sempre ficou fora de nosso foco. Neste artigo, quero apresentar um método que preenche essa lacuna.
preview
Algoritmos de otimização populacionais: algoritmo híbrido de otimização de forrageamento bacteriano com algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Algoritmos de otimização populacionais: algoritmo híbrido de otimização de forrageamento bacteriano com algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Este artigo apresenta uma nova abordagem para resolver problemas de otimização, combinando as ideias dos algoritmos de otimização de forrageamento bacteriano (BFO) com as técnicas usadas no algoritmo genético (GA), resultando no algoritmo híbrido BFO-GA. Ele utiliza o comportamento de enxameamento das bactérias para a busca global da solução ótima e operadores genéticos para refinar os ótimos locais. Ao contrário do BFO original, as bactérias agora podem mutar e herdar genes.
preview
Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)

Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)

Neste artigo, propomos explorar um algoritmo que utiliza operadores de melhoria de política de forma fechada para otimizar as ações do Agente em um ambiente off-line.
preview
Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)

Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)

No aprendizado off-line, utilizamos um conjunto de dados fixo, e isso não abrange toda a variedade do ambiente. Durante o processo de treinamento, nosso Agente pode gerar ações fora desse conjunto. Sem feedback do ambiente, a precisão dessas ações é duvidosa. Manter a política do Agente dentro do conjunto de treinamento se torna importante para confiar nos resultados. Vamos falar mais sobre isso aqui neste artigo.
preview
Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Neste artigo, vamos falar sobre um grupo de algoritmos de otimização conhecidos como "Estratégias Evolutivas" (Evolution Strategies ou ES). Eles são alguns dos primeiros algoritmos que usam princípios de evolução para encontrar soluções ótimas. Vamos mostrar as mudanças feitas nas versões clássicas das ES, além de revisar a função de teste e a metodologia de avaliação dos algoritmos.
preview
Ciência de dados e aprendizado de máquina (Parte 17): O dinheiro cresce em árvores? Florestas aleatórias no trading de forex

Ciência de dados e aprendizado de máquina (Parte 17): O dinheiro cresce em árvores? Florestas aleatórias no trading de forex

Neste artigo, vamos desvendar os segredos da alquimia algorítmica, explorando a arte e precisão dos mercados financeiros. Você vai ver como as florestas aleatórias transformam dados em previsões e ajudam a navegar nas complexidades do mercado financeiro. Vamos entender o papel das florestas aleatórias com dados financeiros e ver se elas podem ajudar a aumentar os lucros.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais

O agrupamento k-médias é uma abordagem para agrupar pontos de dados em um processo que inicialmente se concentra na representação macro do conjunto de dados, onde são aplicados centroides de cluster criados aleatoriamente. Com o tempo, esses centroides são ajustados e escalonados para representar melhor o conjunto de dados. Este artigo examina essa abordagem de agrupamento e algumas de suas aplicações.
preview
Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências

Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências

Desde os primeiros artigos sobre aprendizado por reforço, a gente sempre falou de duas coisas: como explorar o ambiente e definir a função de recompensa. Os artigos mais recentes foram dedicados à exploração durante o aprendizado off-line. Neste aqui, quero apresentar a você um algoritmo em que os autores resolveram deixar de lado a função de recompensa.
preview
Algoritmos de otimização populacional: Mudamos a forma e deslocamos as distribuições de probabilidade e testamos com o "Cabeçudinho Inteligente" (Smart Cephalopod, SC)

Algoritmos de otimização populacional: Mudamos a forma e deslocamos as distribuições de probabilidade e testamos com o "Cabeçudinho Inteligente" (Smart Cephalopod, SC)

Com este artigo investigaremos como a mudança de forma das distribuições de probabilidade afetam o desempenho dos algoritmos de otimização. Realizaremos experimentos baseados no algoritmo de teste "cabeçudinho inteligente" (Smart Cephalopod, SC) para avaliar o desempenho de diferentes distribuições de probabilidade no contexto de tarefas de otimização.