Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Engenharia de Features com Python e MQL5 (Parte I): Previsão de Médias Móveis para Modelos de IA de Longo Alcance

Engenharia de Features com Python e MQL5 (Parte I): Previsão de Médias Móveis para Modelos de IA de Longo Alcance

As médias móveis são, de longe, os melhores indicadores para nossos modelos de IA preverem. No entanto, podemos melhorar ainda mais nossa precisão transformando cuidadosamente nossos dados. Este artigo demonstrará como você pode construir Modelos de IA capazes de prever mais longe no futuro do que você talvez pratique atualmente, sem quedas significativas nos níveis de precisão. É realmente notável como as médias móveis são úteis.
preview
Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Neste artigo, é proposto um novo método para criar sistemas de trading baseados em aprendizado de máquina, utilizando clusterização e anotação de trades para estratégias de retorno à média.
preview
Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)

Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)

Inspirado no jogo clássico de bilhar, o método BOA modela o processo de busca por soluções ótimas como uma partida em que as bolas tentam cair nas caçapas, que simbolizam os melhores resultados. Neste artigo, analisaremos os fundamentos do funcionamento do BOA, seu modelo matemático e sua eficácia na resolução de diferentes problemas de otimização.
preview
Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)

Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)

O Attraos é um framework que integra a teoria do caos à previsão de séries temporais de longo prazo, tratando-as como projeções de sistemas dinâmicos caóticos multidimensionais. Por meio da invariância do atrator, o modelo aplica a reconstrução do espaço de fases e a memória dinâmica com múltiplas resoluções para preservar estruturas históricas.
preview
Otimização com Jogo do Caos — Chaos Game Optimization (CGO)

Otimização com Jogo do Caos — Chaos Game Optimization (CGO)

Apresentamos o novo algoritmo meta-heurístico Chaos Game Optimization (CGO), que demonstra capacidade única de manter alta eficiência em tarefas de grande dimensionalidade. Ao contrário da maioria dos algoritmos de otimização, o CGO não apenas não perde desempenho, como também às vezes melhora sua performance quando a complexidade do problema aumenta, o que constitui sua principal característica.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 45): Aprendizado por Reforço com Monte-Carlo

Técnicas do MQL5 Wizard que você deve conhecer (Parte 45): Aprendizado por Reforço com Monte-Carlo

Monte-Carlo é o quarto algoritmo diferente em aprendizado por reforço que estamos considerando com o objetivo de explorar sua implementação em Expert Advisors montados pelo wizard. Embora ancorado em amostragem aleatória, ele apresenta vastas formas de simulação que podemos explorar.
preview
Redes neurais em trading:  Modelos híbridos de sequências de grafos (Conclusão)

Redes neurais em trading: Modelos híbridos de sequências de grafos (Conclusão)

Seguimos o estudo de modelos híbridos de sequências de grafos (GSM++), que integram as vantagens de diferentes arquiteturas e garantem alta precisão na análise, além de uso eficiente dos recursos computacionais. Esses modelos identificam, de maneira eficaz, padrões ocultos, reduzindo o impacto do ruído de mercado e elevando a qualidade das previsões.
preview
Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)

Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)

Os modelos híbridos de sequências de grafos (GSM++) unem os pontos fortes de diferentes arquiteturas, garantindo alta precisão na análise de dados e otimização do custo computacional. Esses modelos se adaptam de forma eficiente a dados de mercado dinâmicos, melhorando a representação e o processamento das informações financeiras.
preview
Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)

Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)

Apresento a vocês meu novo algoritmo populacional de otimização BIO (Blood Inheritance Optimization), inspirado no sistema de herança dos tipos sanguíneos humanos. Neste algoritmo, cada solução possui seu próprio "tipo sanguíneo", que define a forma de sua evolução. Assim como na natureza, o tipo sanguíneo de uma criança é herdado segundo regras específicas, no BIO as novas soluções recebem suas características através de um sistema de herança e mutações.
preview
Análise de todas as variantes do movimento do preço em um computador quântico da IBM

Análise de todas as variantes do movimento do preço em um computador quântico da IBM

Usamos o computador quântico da IBM para abrir todos os cenários possíveis de movimento do preço. Parece ficção científica? Bem-vindo ao mundo dos cálculos quânticos aplicados ao trading!
preview
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)

Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)

Damos continuidade ao estudo do framework inovador Chimera, um modelo bidimensional do espaço de estados que utiliza tecnologias de redes neurais para análise de séries temporais multidimensionais. Esse método garante alta precisão de previsão com baixo custo computacional.
preview
Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)

Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)

Damos continuidade à implementação dos algoritmos do agente multimodal para negociação financeira, o FinAgent, desenvolvido para análise de dados multimodais da dinâmica de mercado e de padrões históricos de trading.
preview
Seleção de características e redução de dimensionalidade com Análise de Componentes Principais (PCA)

Seleção de características e redução de dimensionalidade com Análise de Componentes Principais (PCA)

O artigo analisa a implementação de um algoritmo modificado de análise de componentes de seleção direta, inspirado nas pesquisas apresentadas no livro de Luca Puggini e Sean McLoone "Análise de Componentes de Seleção Direta: algoritmos e aplicações".
preview
Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA

Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA

O SARSA (State-Action-Reward-State-Action, estado–ação–recompensa–estado–ação) é outro algoritmo que pode ser utilizado na implementação de aprendizado por reforço. Vamos analisar como esse algoritmo pode ser implementado como um modelo independente (e não apenas como um mecanismo de aprendizado) em Expert Advisors gerados no Wizard, de forma semelhante ao que fizemos nos casos de Q-learning e DQN.
preview
Reimaginando Estratégias Clássicas (Parte IX): Análise de Múltiplos Time-Frames (II)

Reimaginando Estratégias Clássicas (Parte IX): Análise de Múltiplos Time-Frames (II)

Na discussão de hoje, examinamos a estratégia de análise de múltiplos time-frames para descobrir em qual time-frame nosso modelo de IA apresenta melhor desempenho. Nossa análise nos levou a concluir que os time-frames Mensal e de 1 Hora produzem modelos com taxas de erro relativamente baixas no par EURUSD. Usamos isso a nosso favor e criamos um algoritmo de negociação que faz previsões de IA no time-frame Mensal e executa suas negociações no time-frame de 1 Hora.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks

Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks

O Deep-Q-Network é um algoritmo de aprendizado por reforço que utiliza redes neurais para projetar (estimar) o próximo valor-Q e a ação ideal durante o processo de treinamento de um módulo de aprendizado de máquina. Já consideramos um algoritmo alternativo de aprendizado por reforço, o Q-Learning. Este artigo, portanto, apresenta outro exemplo de como um MLP treinado com aprendizado por reforço pode ser usado dentro de uma classe de sinal personalizada.
preview
Integração do MQL5 com pacotes de processamento de dados (Parte 3): Visualização de dados aprimorada

Integração do MQL5 com pacotes de processamento de dados (Parte 3): Visualização de dados aprimorada

Neste artigo, vamos explorar a visualização de dados avançada, incluindo recursos como interatividade, dados em camadas e elementos dinâmicos, que permitem aos traders examinar tendências, padrões e correlações com mais eficácia.
preview
Data Science e ML (Parte 30): O Casal Poderoso para Prever o Mercado de Ações, Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs)

Data Science e ML (Parte 30): O Casal Poderoso para Prever o Mercado de Ações, Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs)

Neste artigo, exploramos a integração dinâmica das Redes Neurais Convolucionais (CNNs) e das Redes Neurais Recorrentes (RNNs) na previsão do mercado de ações. Aproveitando a capacidade das CNNs de extrair padrões e a proficiência das RNNs em lidar com dados sequenciais. Vamos ver como essa combinação poderosa pode aumentar a precisão e eficiência dos algoritmos de negociação.
preview
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 9): Expert Advisor de Múltiplas Estratégias (I)

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 9): Expert Advisor de Múltiplas Estratégias (I)

Hoje, vamos explorar as possibilidades de incorporar múltiplas estratégias em um Expert Advisor (EA) usando MQL5. Os Expert Advisors oferecem capacidades mais amplas do que apenas indicadores e scripts, permitindo abordagens de negociação mais sofisticadas que podem se adaptar às mudanças das condições do mercado. Confira mais na discussão deste artigo.
preview
Repensando estratégias clássicas (Parte X): A IA pode operar o MACD?

Repensando estratégias clássicas (Parte X): A IA pode operar o MACD?

Junte-se a nós em uma análise empírica do indicador MACD para verificar se a aplicação da inteligência artificial à estratégia que inclui esse indicador pode aumentar a precisão da previsão do par EURUSD. Avaliamos simultaneamente se é mais fácil prever o próprio indicador do que o preço, bem como se o valor do indicador permite prever os níveis futuros de preço. Forneceremos as informações necessárias para que você decida se vale a pena investir seu tempo integrando o MACD às suas estratégias de trading com o uso de inteligência artificial.
preview
Exemplo de novo Indicador e LSTM Condicional

Exemplo de novo Indicador e LSTM Condicional

Este artigo explora o desenvolvimento de um Expert Advisor (EA) para trading automatizado que combina análise técnica com previsões de deep learning.
preview
Ganhe Vantagem em Qualquer Mercado (Parte V): Dados Alternativos FRED EURUSD

Ganhe Vantagem em Qualquer Mercado (Parte V): Dados Alternativos FRED EURUSD

Na discussão de hoje, utilizamos dados alternativos diários do Federal Reserve de St. Louis sobre o Índice Amplo do Dólar dos EUA e um conjunto de outros indicadores macroeconômicos para prever a taxa de câmbio futura do EURUSD. Infelizmente, embora os dados aparentem ter uma correlação quase perfeita, não conseguimos obter ganhos materiais em nossa acurácia de modelo, o que pode nos indicar que os investidores talvez estejam melhores usando apenas as cotações normais do mercado.
preview
Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de uma estratégia de trading com LLM (II) - Configuração do LoRA

Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de uma estratégia de trading com LLM (II) - Configuração do LoRA

Os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial que evolui rapidamente. E para aproveitar isso devemos pensar em como integrar LLMs avançados em nossa negociação algorítmica. Muitos acham desafiador ajustar esses modelos de acordo com suas necessidades, implantá-los localmente e, logo, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.
preview
Ciência de dados e aprendizado de máquina (Parte 31): Aplicação de modelos CatBoost no trading

Ciência de dados e aprendizado de máquina (Parte 31): Aplicação de modelos CatBoost no trading

Os modelos de inteligência artificial CatBoost ganharam enorme popularidade na comunidade de aprendizado de máquina graças à sua precisão nas previsões, eficiência e resistência a conjuntos de dados fragmentados e complexos. Este artigo trata de como usar esses modelos no mercado Forex.
preview
Codificação ordinal de variáveis nominais

Codificação ordinal de variáveis nominais

Neste artigo, discutiremos e demonstraremos como transformar variáveis nominais em formatos numéricos adequados para algoritmos de aprendizado de máquina, utilizando tanto Python quanto MQL5.
preview
Expert Advisor Auto-otimizável com MQL5 e Python (Parte IV): Empilhamento de Modelos

Expert Advisor Auto-otimizável com MQL5 e Python (Parte IV): Empilhamento de Modelos

Hoje, vamos demonstrar como você pode construir aplicações de trading com IA capazes de aprender com os próprios erros. Vamos demonstrar uma técnica conhecida como stacking (empilhamento), na qual usamos 2 modelos para fazer 1 previsão. O primeiro modelo é tipicamente um aprendiz mais fraco, e o segundo modelo normalmente é um modelo mais poderoso que aprende com os resíduos do nosso aprendiz mais fraco. Nosso objetivo é criar um conjunto de modelos (ensemble), na esperança de alcançar maior acurácia.
preview
Ganhe Vantagem em Qualquer Mercado (Parte IV): Índices de Volatilidade do Euro e do Ouro da CBOE

Ganhe Vantagem em Qualquer Mercado (Parte IV): Índices de Volatilidade do Euro e do Ouro da CBOE

Vamos analisar dados alternativos selecionados pela Chicago Board Of Options Exchange (CBOE) para melhorar a precisão de nossas redes neurais profundas ao prever o símbolo XAUEUR.
preview
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Descubra o inovador framework Chimera, um modelo bidimensional do espaço de estados que utiliza redes neurais para analisar séries temporais multidimensionais. Esse método oferece alta precisão com baixo custo computacional, superando abordagens tradicionais e arquiteturas do tipo Transformer.
preview
Algoritmo de busca circular — Circle Search Algorithm (CSA)

Algoritmo de busca circular — Circle Search Algorithm (CSA)

Este artigo apresenta um novo algoritmo metaheurístico de otimização, o CSA (Circle Search Algorithm), baseado nas propriedades geométricas do círculo. O algoritmo utiliza o princípio de movimentação de pontos ao longo das tangentes para encontrar a solução ideal, combinando fases de diversificação global e intensificação local.
preview
Fibonacci no Forex (Parte I): Testando relações entre preço e tempo

Fibonacci no Forex (Parte I): Testando relações entre preço e tempo

Como o mercado se movimenta com base em proporções derivadas dos números de Fibonacci? Essa sequência, em que cada número é a soma dos dois anteriores (1, 1, 2, 3, 5, 8, 13, 21...), não descreve apenas o crescimento da população de coelhos. Vamos considerar a hipótese de Pitágoras de que tudo no mundo obedece a certas proporções numéricas...
preview
Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)

Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)

Seguimos com a exploração do framework de aprendizado multitarefa baseado na arquitetura ResNeXt, que se destaca pela modularidade, alta eficiência computacional e pela capacidade de identificar padrões estáveis nos dados. O uso de um codificador único e de "cabeças" especializadas reduz o risco de overfitting do modelo e aumenta a qualidade das previsões.
preview
Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT

Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT

Seguimos com as tentativas de decifrar os movimentos dos preços... Que tal uma análise linguística do "vocabulário do mercado", que obtemos ao converter o código binário do preço para BIP39? Neste artigo, vamos nos aprofundar em uma abordagem inovadora para a análise de dados de mercado e explorar como os métodos modernos de processamento de linguagem natural podem ser aplicados ao idioma do mercado.
preview
Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.
preview
Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)

Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)

O algoritmo Royal Flush Optimization, criado pelo autor, propõe uma nova forma de abordar problemas de otimização, substituindo a codificação binária clássica dos algoritmos genéticos por uma abordagem setorial, inspirada nos princípios do pôquer. O RFO demonstra como a simplificação de princípios fundamentais pode levar à criação de um método de otimização eficaz e prático. O artigo apresenta uma análise detalhada do algoritmo e os resultados dos testes realizados.
preview
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)

Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)

Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.
preview
Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)

Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)

Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.
preview
Busca dialética — Dialectic Search (DA)

Busca dialética — Dialectic Search (DA)

Apresentamos o Algoritmo Dialético (DA), um novo método de otimização global inspirado no conceito filosófico de dialética. O algoritmo utiliza uma divisão única da população em pensadores especulativos e práticos. Os testes mostram um desempenho impressionante de até 98% em tarefas de baixa dimensionalidade e uma eficácia geral de 57,95%. Este artigo explica esses números e apresenta uma descrição detalhada do algoritmo e os resultados dos experimentos em diferentes tipos de funções.
preview
Neurônio biológico para previsão de séries temporais financeiras

Neurônio biológico para previsão de séries temporais financeiras

Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?
preview
Indicador de previsão de volatilidade usando Python

Indicador de previsão de volatilidade usando Python

Vamos prever a volatilidade extrema futura com ajuda da classificação binária. Criamos um indicador de previsão de volatilidade extrema com uso de aprendizado de máquina.
preview
Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)

Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)

Meu algoritmo original. Neste artigo é apresentado o Algoritmo da Viagem Evolutiva no Tempo (TETA), inspirado no conceito de universos paralelos e fluxos temporais. A ideia central do algoritmo é que, embora a viagem no tempo no sentido convencional seja impossível, podemos escolher uma sequência de eventos que leva a diferentes realidades.