Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)
Continuamos a construção dos algoritmos que formam a base do DADA, um framework avançado para detecção de anomalias em séries temporais. Essa abordagem permite distinguir, de maneira eficiente, as flutuações aleatórias dos desvios realmente significativos. Ao contrário dos métodos clássicos, o DADA se adapta dinamicamente a diferentes tipos de dados, selecionando o nível ideal de compressão para cada caso específico.
Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)
Apresentamos o DADA, um framework inovador para identificação de anomalias em séries temporais. Ele ajuda a distinguir oscilações aleatórias de desvios suspeitos. Ao contrário dos métodos tradicionais, o DADA se ajusta de maneira flexível a diferentes conjuntos de dados. Em vez de usar um nível fixo de compressão, ele testa vários níveis e escolhe o mais adequado para cada situação.
Aplicação da teoria dos jogos em algoritmos de trading
Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
Percepções de Negociação por Meio do Volume: Confirmação de Tendência
A Técnica Aprimorada de Confirmação de Tendência combina ação de preço, análise de volume e aprendizado de máquina para identificar movimentos genuínos do mercado. Ela requer tanto rompimentos de preço quanto aumentos de volume (50% acima da média) para validação da negociação, enquanto utiliza uma rede neural LSTM para confirmação adicional. O sistema emprega dimensionamento de posição baseado em ATR e gerenciamento dinâmico de risco, tornando-o adaptável a várias condições de mercado, ao mesmo tempo em que filtra sinais falsos.
Arbitragem de swap no Forex: Montando uma carteira sintética e criando um fluxo estável de swaps
Quer saber como lucrar com a diferença entre taxas de juros? Neste artigo, veremos como usar a arbitragem de swap no Forex para obter uma renda estável todas as noites, criando uma carteira resistente às oscilações do mercado.
Arbitragem no trading Forex: Análise dos movimentos de moedas sintéticas e seu retorno à média
Neste artigo, tentaremos analisar os movimentos das moedas sintéticas na integração Python + MQL5 e entender até que ponto a arbitragem ainda é viável no Forex atualmente. Além disso: apresentaremos um código pronto em Python para análise de moedas sintéticas e explicaremos em detalhes o que são essas moedas no mercado Forex.
Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)
Trata-se de uma nova metaheurística de otimização bioinspirada e autoral, denominada NOA (Neuroboids Optimization Algorithm), que combina princípios de inteligência coletiva e redes neurais. Ao contrário dos métodos clássicos, o algoritmo utiliza uma população de "neuroboides" autoaprendizes, cada um com sua própria rede neural, que adapta a estratégia de busca em tempo real. O artigo em questão apresenta a arquitetura do algoritmo, os mecanismos de autoaprendizado dos agentes e as perspectivas de aplicação dessa abordagem híbrida em tarefas complexas de otimização.
Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)
Damos continuidade à implementação dos métodos propostos pelos autores do framework DUET, que apresenta uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para revelar padrões ocultos nos dados analisados.
Redes neurais no trading: Dupla clusterização de séries temporais (DUET)
O framework DUET propõe uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para identificar padrões ocultos nos dados analisados. Isso permite adaptar os modelos às mudanças ao longo do tempo e aumentar a precisão das previsões por meio da eliminação de ruídos.
Gerente de risco profissional remoto para Forex em Python
Criamos um gerente de risco profissional remoto para Forex em Python e o implantamos em um servidor, passo a passo. Ao longo do artigo, veremos como gerenciar riscos no Forex de maneira programada e como evitar a perda total do depósito.
Algoritmo do Restaurateur de Sucesso — Successful Restaurateur Algorithm (SRA)
O Algoritmo do Restaurateur de Sucesso (SRA) é um método inovador de otimização inspirado nos princípios de gestão de um restaurante. Ao contrário das abordagens tradicionais, o SRA não descarta as soluções mais fracas, mas as melhora, combinando-as com elementos das soluções de maior sucesso. O algoritmo apresenta resultados competitivos e traz uma nova perspectiva sobre como equilibrar a diversificação e a intensificação em problemas de otimização.
Utilizando o modelo de Machine Learning CatBoost como Filtro para Estratégias de Seguimento de Tendência
CatBoost é um poderoso modelo de machine learning baseado em árvores que se especializa em tomada de decisão com base em features estacionárias. Outros modelos baseados em árvores como XGBoost e Random Forest compartilham características semelhantes em termos de robustez, capacidade de lidar com padrões complexos e interpretabilidade. Esses modelos têm uma ampla gama de usos, desde análise de features até gestão de risco. Neste artigo, vamos percorrer o procedimento de utilização de um modelo CatBoost treinado como filtro para uma estratégia clássica de seguimento de tendência com cruzamento de médias móveis.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 49): Aprendizado por reforço e otimização proximal de política
A otimização proximal de política (Proximal Policy Optimization) é mais um algoritmo de aprendizado por reforço, que atualiza a política, muitas vezes em forma de rede, em passos muito pequenos para garantir a estabilidade do modelo. Como de costume, vamos analisar como esse algoritmo pode ser aplicado em um EA construído com a ajuda do Assistente.
Informações detalhadas sobre trading baseado em volume: Indo além dos gráficos OHLC
Um sistema de trading algorítmico que combina análise de volume com métodos de machine learning, em especial com redes neurais LSTM. Diferente das abordagens tradicionais de trading, que se concentram principalmente no movimento dos preços, este sistema enfatiza os padrões de volume e suas derivadas para prever os movimentos do mercado. A metodologia inclui três componentes principais: análise das derivadas do volume (primeira e segunda derivada), previsões LSTM para padrões de volume e indicadores técnicos tradicionais.
De Python para MQL5: Uma Jornada em Sistemas de Trading Inspirados na Computação Quântica
O artigo explora o desenvolvimento de um sistema de trading inspirado na computação quântica, fazendo a transição de um protótipo em Python para uma implementação em MQL5 para trading no mundo real. O sistema utiliza princípios da computação quântica, como superposição e emaranhamento, para analisar estados de mercado, embora rode em computadores clássicos usando simuladores quânticos. Os principais recursos incluem um sistema de três qubits para analisar oito estados de mercado simultaneamente, períodos de análise de 24 horas e sete indicadores técnicos para análise de mercado. Embora as taxas de acurácia possam parecer modestas, elas fornecem uma vantagem significativa quando combinadas com estratégias adequadas de gerenciamento de risco.
Redes Generativas Adversariais (GANs) para Dados Sintéticos em Modelagem Financeira (Parte 1): Introdução às GANs e Dados Sintéticos em Modelagem Financeira
Este artigo introduz os traders às Redes Generativas Adversariais (GANs) para geração de dados financeiros sintéticos, abordando limitações de dados no treinamento de modelos. Ele cobre os fundamentos das GANs, implementações em Python e MQL5, e aplicações práticas em finanças, capacitando traders a aumentar a precisão e a robustez dos modelos por meio de dados sintéticos.
Informação mútua como critério para seleção progressiva de características
Neste artigo apresentamos a implementação da seleção progressiva de características em MQL5, baseada na informação mútua entre o conjunto ótimo de preditores e a variável alvo.
Ciência de dados e aprendizado de máquina (Parte 32): Como manter a relevância de modelos de IA com treinamento on-line
No mundo em constante transformação do trading, adaptar-se às mudanças do mercado é simplesmente uma necessidade. Todos os dias surgem novos padrões e tendências, o que torna difícil até mesmo para os modelos mais avançados de aprendizado de máquina manterem sua eficácia diante de condições em mutação. Neste artigo, vamos falar sobre como manter os modelos relevantes e capazes de reagir a novos dados de mercado por meio de reeducação automática.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 47): Aprendizado por reforço (algoritmo de diferenças temporais)
Temporal Difference (TD, diferenças temporais) é mais um algoritmo de aprendizado por reforço, que atualiza os valores Q com base na diferença entre as recompensas previstas e as recompensas reais durante o treinamento do agente. A ênfase está na atualização dos valores Q sem considerar necessariamente seus pares "estado-ação" (state-action). Como de costume, veremos como esse algoritmo pode ser aplicado em um EA, criado com a ajuda do Assistente.
Seleção de características passo a passo em MQL5
Neste artigo, apresentamos uma versão modificada da seleção de características passo a passo, implementada em MQL5. Essa abordagem é baseada nas técnicas descritas em Modern Data Mining Algorithms in C++ and CUDA C de Timothy Masters.
Reimaginando Estratégias Clássicas (Parte XI): Cruzamento de Médias Móveis (II)
As médias móveis e o oscilador estocástico podem ser usados para gerar sinais de negociação de tendência. No entanto, esses sinais só serão observados após a ação do preço ter ocorrido. Podemos superar efetivamente essa defasagem inerente dos indicadores técnicos usando IA. Este artigo ensinará como criar um Expert Advisor totalmente autônomo com IA, de forma a melhorar qualquer uma de suas estratégias de negociação existentes. Até mesmo a estratégia de negociação mais antiga possível pode ser aprimorada.
Engenharia de Recursos com Python e MQL5 (Parte II): Ângulo de Preço
Existem muitas postagens no Fórum MQL5 pedindo ajuda para calcular a inclinação das mudanças de preço. Este artigo demonstrará uma forma possível de calcular o ângulo formado pelas variações de preço em qualquer mercado que você deseje negociar. Além disso, responderemos se desenvolver esse novo recurso vale o esforço e o tempo adicionais investidos. Vamos explorar se a inclinação do preço pode melhorar a precisão de algum dos nossos modelos de IA ao prever o par USDZAR no M1.
Expert Advisor Auto-Otimizável com MQL5 e Python (Parte VI): Aproveitando o Deep Double Descent
O aprendizado de máquina tradicional ensina os praticantes a serem vigilantes para não superajustar (overfitting) seus modelos. No entanto, essa ideologia está sendo desafiada por novas descobertas publicadas por pesquisadores diligentes de Harvard, que identificaram que o que parece ser overfitting pode, em certas circunstâncias, ser resultado de encerrar prematuramente os procedimentos de treinamento. Demonstramos como podemos usar as ideias publicadas no artigo de pesquisa para melhorar nosso uso de IA na previsão de retornos de mercado.
Engenharia de Features com Python e MQL5 (Parte I): Previsão de Médias Móveis para Modelos de IA de Longo Alcance
As médias móveis são, de longe, os melhores indicadores para nossos modelos de IA preverem. No entanto, podemos melhorar ainda mais nossa precisão transformando cuidadosamente nossos dados. Este artigo demonstrará como você pode construir Modelos de IA capazes de prever mais longe no futuro do que você talvez pratique atualmente, sem quedas significativas nos níveis de precisão. É realmente notável como as médias móveis são úteis.
Criação de uma estratégia de retorno à média com base em aprendizado de máquina
Neste artigo, é proposto um novo método para criar sistemas de trading baseados em aprendizado de máquina, utilizando clusterização e anotação de trades para estratégias de retorno à média.
Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)
Inspirado no jogo clássico de bilhar, o método BOA modela o processo de busca por soluções ótimas como uma partida em que as bolas tentam cair nas caçapas, que simbolizam os melhores resultados. Neste artigo, analisaremos os fundamentos do funcionamento do BOA, seu modelo matemático e sua eficácia na resolução de diferentes problemas de otimização.
Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)
O Attraos é um framework que integra a teoria do caos à previsão de séries temporais de longo prazo, tratando-as como projeções de sistemas dinâmicos caóticos multidimensionais. Por meio da invariância do atrator, o modelo aplica a reconstrução do espaço de fases e a memória dinâmica com múltiplas resoluções para preservar estruturas históricas.
Otimização com Jogo do Caos — Chaos Game Optimization (CGO)
Apresentamos o novo algoritmo meta-heurístico Chaos Game Optimization (CGO), que demonstra capacidade única de manter alta eficiência em tarefas de grande dimensionalidade. Ao contrário da maioria dos algoritmos de otimização, o CGO não apenas não perde desempenho, como também às vezes melhora sua performance quando a complexidade do problema aumenta, o que constitui sua principal característica.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 45): Aprendizado por Reforço com Monte-Carlo
Monte-Carlo é o quarto algoritmo diferente em aprendizado por reforço que estamos considerando com o objetivo de explorar sua implementação em Expert Advisors montados pelo wizard. Embora ancorado em amostragem aleatória, ele apresenta vastas formas de simulação que podemos explorar.
Redes neurais em trading: Modelos híbridos de sequências de grafos (Conclusão)
Seguimos o estudo de modelos híbridos de sequências de grafos (GSM++), que integram as vantagens de diferentes arquiteturas e garantem alta precisão na análise, além de uso eficiente dos recursos computacionais. Esses modelos identificam, de maneira eficaz, padrões ocultos, reduzindo o impacto do ruído de mercado e elevando a qualidade das previsões.
Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)
Os modelos híbridos de sequências de grafos (GSM++) unem os pontos fortes de diferentes arquiteturas, garantindo alta precisão na análise de dados e otimização do custo computacional. Esses modelos se adaptam de forma eficiente a dados de mercado dinâmicos, melhorando a representação e o processamento das informações financeiras.
Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)
Apresento a vocês meu novo algoritmo populacional de otimização BIO (Blood Inheritance Optimization), inspirado no sistema de herança dos tipos sanguíneos humanos. Neste algoritmo, cada solução possui seu próprio "tipo sanguíneo", que define a forma de sua evolução. Assim como na natureza, o tipo sanguíneo de uma criança é herdado segundo regras específicas, no BIO as novas soluções recebem suas características através de um sistema de herança e mutações.
Análise de todas as variantes do movimento do preço em um computador quântico da IBM
Usamos o computador quântico da IBM para abrir todos os cenários possíveis de movimento do preço. Parece ficção científica? Bem-vindo ao mundo dos cálculos quânticos aplicados ao trading!
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)
Damos continuidade ao estudo do framework inovador Chimera, um modelo bidimensional do espaço de estados que utiliza tecnologias de redes neurais para análise de séries temporais multidimensionais. Esse método garante alta precisão de previsão com baixo custo computacional.
Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)
Damos continuidade à implementação dos algoritmos do agente multimodal para negociação financeira, o FinAgent, desenvolvido para análise de dados multimodais da dinâmica de mercado e de padrões históricos de trading.
Seleção de características e redução de dimensionalidade com Análise de Componentes Principais (PCA)
O artigo analisa a implementação de um algoritmo modificado de análise de componentes de seleção direta, inspirado nas pesquisas apresentadas no livro de Luca Puggini e Sean McLoone "Análise de Componentes de Seleção Direta: algoritmos e aplicações".
Recursos do Assistente MQL5 que você precisa conhecer (Parte 43): Aprendizado por reforço com SARSA
O SARSA (State-Action-Reward-State-Action, estado–ação–recompensa–estado–ação) é outro algoritmo que pode ser utilizado na implementação de aprendizado por reforço. Vamos analisar como esse algoritmo pode ser implementado como um modelo independente (e não apenas como um mecanismo de aprendizado) em Expert Advisors gerados no Wizard, de forma semelhante ao que fizemos nos casos de Q-learning e DQN.
Reimaginando Estratégias Clássicas (Parte IX): Análise de Múltiplos Time-Frames (II)
Na discussão de hoje, examinamos a estratégia de análise de múltiplos time-frames para descobrir em qual time-frame nosso modelo de IA apresenta melhor desempenho. Nossa análise nos levou a concluir que os time-frames Mensal e de 1 Hora produzem modelos com taxas de erro relativamente baixas no par EURUSD. Usamos isso a nosso favor e criamos um algoritmo de negociação que faz previsões de IA no time-frame Mensal e executa suas negociações no time-frame de 1 Hora.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks
O Deep-Q-Network é um algoritmo de aprendizado por reforço que utiliza redes neurais para projetar (estimar) o próximo valor-Q e a ação ideal durante o processo de treinamento de um módulo de aprendizado de máquina. Já consideramos um algoritmo alternativo de aprendizado por reforço, o Q-Learning. Este artigo, portanto, apresenta outro exemplo de como um MLP treinado com aprendizado por reforço pode ser usado dentro de uma classe de sinal personalizada.
Integração do MQL5 com pacotes de processamento de dados (Parte 3): Visualização de dados aprimorada
Neste artigo, vamos explorar a visualização de dados avançada, incluindo recursos como interatividade, dados em camadas e elementos dinâmicos, que permitem aos traders examinar tendências, padrões e correlações com mais eficácia.