Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview

Redes neurais de retropropagação em matrizes MQL5

Este artigo trata da teoria e prática do uso do algoritmo de retropropagação de erros no MQL5 através de matrizes. Oferecemos classes prontas e exemplos de scripts, indicadores e EAs.
preview

Algoritmos de otimização populacionais: Algoritmo de pesquisa gravitacional (GSA)

O GSA é um algoritmo populacional inspirado na natureza inanimada. Sua capacidade de modelar com alta precisão a interação entre corpos físicos, através da lei da gravidade de Newton incorporada no algoritmo, permite contemplar um espetáculo fascinante de dança entre sistemas planetários e aglomerados galácticos, representado de forma impressionante em animações. Hoje vamos discutir um dos algoritmos de otimização mais interessantes e originais. Um simulador de movimento de objetos espaciais está incluído.
preview

Medindo o valor informativo do Indicador

O aprendizado de máquina se tornou uma técnica popular de desenvolvimento de estratégias. Na negociação, tradicionalmente, mais atenção é dada à maximização da lucratividade e à precisão das previsões. Enquanto isso, o processamento de dados usado para construir modelos preditivos permanece na periferia. Neste artigo, discutimos o uso do conceito de entropia para avaliar a adequação de indicadores na construção de modelos preditivos, conforme descrito no livro Testing and Tuning Market Trading Systems escrito por Timothy Masters.
preview

Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)

A surpreendente capacidade das plantas daninhas de sobreviver em uma ampla variedade de condições foi a inspiração para o desenvolvimento de um poderoso algoritmo de otimização. O IWO (Invasive Weed Optimization) é considerado um dos melhores entre os analisados até o momento.
preview

Algoritmos de otimização populacionais: algoritmo de otimização de forrageamento bacteriano (BFO)

A base da estratégia de forrageamento de E. coli (E. coli) inspirou cientistas a desenvolverem o algoritmo de otimização BFO. Esse algoritmo apresenta ideias originais e abordagens promissoras para otimização e merece um estudo mais aprofundado.
preview

Experiências com redes neurais (Parte 3): Uso pratico

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview

Algoritmos de otimização populacionais: Algoritmo do morcego

Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.
preview

Algoritmos de otimização populacionais: algoritmo de vaga-lumes

Vamos considerar o método de otimização de vaga-lumes (Firefly Algorithm, FA). Esse algoritmo evoluiu de um método desconhecido por meio de modificações para se tornar um líder real na tabela de classificação.
preview

Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Continuamos a estudar os algoritmos de aprendizado Q distribuído. Em artigos anteriores, já discutimos os algoritmos de aprendizado Q distribuído e de quantil. No primeiro, aprendemos as probabilidades de determinados intervalos de valores. No segundo, aprendemos intervalos com uma probabilidade específica. Em ambos os algoritmos, utilizamos o conhecimento prévio de uma distribuição e ensinamos a outra. Neste artigo, vamos examinar um algoritmo que permite que o modelo aprenda ambas as distribuições.
preview

Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Continuamos a explorar algoritmos de aprendizado por reforço. Todos os algoritmos que analisamos até agora exigiam a criação de uma política de recompensa de tal forma que o agente pudesse avaliar cada uma de suas ações em cada transição de um estado do sistema para outro. No entanto, essa abordagem é bastante artificial. Na prática, existe um intervalo de tempo entre a ação e a recompensa. Neste artigo, proponho que você se familiarize com um algoritmo de aprendizado de modelo capaz de lidar com diferentes atrasos temporais entre a ação e a recompensa.
preview

Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.
preview

Teoria das Categorias em MQL5 (Parte 2)

A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL5. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.
preview
Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge

Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge

A regressão de Ridge é uma técnica simples para reduzir a complexidade do modelo e evitar o ajuste excessivo que pode resultar da regressão linear simples
preview
Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

As matrizes servem como base para os algoritmos de aprendizado de máquina e computação em geral devido à sua capacidade de lidar efetivamente com grandes operações matemáticas. A biblioteca padrão tem tudo o que é necessário, mas vamos ver como podemos estendê-la introduzindo várias funções no arquivo utils, ainda não disponível na biblioteca
preview
Teoria das Categorias em MQL5 (Parte 1)

Teoria das Categorias em MQL5 (Parte 1)

A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.
preview
Redes neurais de maneira fácil (Parte 33): regressão quantílica em aprendizado Q distribuído,

Redes neurais de maneira fácil (Parte 33): regressão quantílica em aprendizado Q distribuído,

Continuamos a estudar o aprendizado Q distribuído e hoje veremos essa abordagem de outro ponto de vista. Falaremos sobre a possibilidade de usar regressão quantílica para resolver o problema de previsão de movimentos de preços.
preview
Integrando modelos de ML ao Testador de estratégias  (Parte 3): Gerenciamento de Arquivos CSV(II)

Integrando modelos de ML ao Testador de estratégias (Parte 3): Gerenciamento de Arquivos CSV(II)

Este artigo fornece uma visão detalhada sobre como construir uma classe em MQL5 para gerenciamento eficiente de arquivos CSV. Ele explica como os métodos de abertura, escrita, leitura e conversão de dados são implementados e como eles podem ser utilizados para armazenar e carregar dados. Além disso, o artigo também discute as limitações e considerações importantes ao usar essa classe. É uma leitura valiosa para aqueles interessados em aprender a trabalhar com arquivos CSV em MQL5.
preview
Algoritmos de otimização populacionais: Algoritmo de otimização de cuco (COA)

Algoritmos de otimização populacionais: Algoritmo de otimização de cuco (COA)

O próximo algoritmo que abordaremos será a otimização de busca de cuco usando voos Levy. Este é um dos algoritmos de otimização mais recentes e um novo líder na tabela de classificação.
preview
Algoritmos de otimização populacionais: Otimizador lobo-cinzento (GWO)

Algoritmos de otimização populacionais: Otimizador lobo-cinzento (GWO)

Vamos falar sobre um dos algoritmos de otimização mais recentes e modernos: o "Packs of grey wolves" (manada de lobos-cinzentos). Devido ao seu comportamento distinto em funções de teste, este algoritmo se torna um dos mais interessantes em comparação com outros considerados anteriormente. Ele é um dos principais candidatos para treinamento de redes neurais e para otimizar funções suaves com muitas variáveis.
preview
Algoritmos de otimização populacionais: Colônia artificial de abelhas (Artificial Bee Colony, ABC)

Algoritmos de otimização populacionais: Colônia artificial de abelhas (Artificial Bee Colony, ABC)

Hoje estudaremos o algoritmo de colônia artificial de abelhas. Complementaremos nosso conhecimento com novos princípios para estudar espaços funcionais. E neste artigo falarei sobre minha interpretação da versão clássica do algoritmo.
preview
Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 04): Análise discriminante linear

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 04): Análise discriminante linear

O trader moderno está quase sempre à procura de novas ideias. Para isso, tenta novas estratégias, modifica e descarta aquelas que não funcionam. Nesta série de artigos, tentarei provar que o assistente MQL5 é a verdadeira espinha dorsal de um trader moderno.
preview
Ciência de dados e Aprendizado de Máquina (parte 09): O algoritmo K-vizinhos mais próximos (KNN)

Ciência de dados e Aprendizado de Máquina (parte 09): O algoritmo K-vizinhos mais próximos (KNN)

Este é um algoritmo preguiçoso que não aprende com o conjunto de dados de treinamento, ele armazena o conjunto de dados e age imediatamente quando ele recebe uma nova amostra. Por mais simples que ele seja, ele é usado em uma variedade de aplicações do mundo real
preview
Ciência de Dados e Aprendizado de Máquina (Parte 08): Agrupamento K-Means em MQL5

Ciência de Dados e Aprendizado de Máquina (Parte 08): Agrupamento K-Means em MQL5

A mineração de dados é crucial para um cientista de dados e um trader porque, muitas vezes, os dados não são tão diretos quanto pensamos, o olho humano não consegue entender o padrão subjacente menor e as relações no conjunto de dados, talvez o algoritmo K-means pode nos ajudar com isso. Vamos descobrir...
preview
Ciência de Dados e Aprendizado de Máquina (Parte 07): Regressão Polinomial

Ciência de Dados e Aprendizado de Máquina (Parte 07): Regressão Polinomial

Ao contrário da regressão linear, a regressão polinomial é um modelo flexível destinado a performar melhor em tarefas que o modelo de regressão linear não poderia lidar. Vamos descobrir como fazer modelos polinomiais em MQL5 e tirar algo positivo disso.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 03): Entropia de Shannon

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 03): Entropia de Shannon

O trader de hoje é um filomata que está quase sempre procurando novas ideias, experimentando-as, escolhendo modificá-las ou descartá-las; um processo exploratório que deve custar uma quantidade razoável de diligência. Esta série de artigos proporá que o assistente MQL5 deve ser um esteio para os traders.
preview
Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos

Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos

No último artigo, iniciamos a análise dos métodos de otimização sem gradiente, e nos familiarizamos com o algoritmo genético. Hoje, continuaremos a discutir o mesmo assunto e também examinaremos outra classe de algoritmos evolutivos.
preview
Algoritmos de otimização populacionais: Otimização de colônia de formigas (ACO)

Algoritmos de otimização populacionais: Otimização de colônia de formigas (ACO)

Desta vez, vamos dar uma olhada no algoritmo de otimização de colônia de formigas ("Ant Colony optimization algorithm", em inglês). O algoritmo é muito interessante e ambíguo. Trata-se de uma tentativa de criar um novo tipo de ACO.
preview
Algoritmos de otimização populacionais: Enxame de partículas (PSO)

Algoritmos de otimização populacionais: Enxame de partículas (PSO)

Neste artigo vamos analisar o popular algoritmo de otimização por enxame de partículas (PSO). Anteriormente, discutimos características importantes de algoritmos de otimização, como convergência, velocidade de convergência, estabilidade, escalabilidade e desenvolvemos uma bancada de testes. Também analisamos um algoritmo simples baseado em geradores de números aleatórios (GNA).
preview
Redes neurais de maneira fácil (Parte 30): Algoritmos genéticos

Redes neurais de maneira fácil (Parte 30): Algoritmos genéticos

Hoje quero apresentar-lhes um método de aprendizado um pouco diferente. Pode-se dizer que é emprestado da teoria da evolução de Darwin. É provavelmente menos controlável do que os métodos discutidos anteriormente. Mas, mesmo assim, permite também treinar modelos indiferenciados.
preview
Redes neurais de maneira fácil (Parte 29): Algoritmo ator-crítico de vantagem (Advantage actor-critic)

Redes neurais de maneira fácil (Parte 29): Algoritmo ator-crítico de vantagem (Advantage actor-critic)

Nos artigos anteriores desta série, conhecemos 2 algoritmos de aprendizado por reforço. Cada um deles tem suas próprias vantagens e desvantagens. Como costuma acontecer quando nos deparamos com esses casos, surge a ideia de combinar os dois métodos em um algoritmo que incorpore o melhor dos dois. E assim compensar as deficiências de cada um deles. Falaremos sobre tal combinação de métodos neste artigo.
preview
Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Continuamos a estudar métodos de aprendizado por reforço. No artigo anterior, nos iniciamos no método de aprendizado Q profundo. Com ele, treinamos um modelo para prever a recompensa imediata dependendo da ação tomada por nós em uma determinada situação. E, em seguida, realizamos uma ação de acordo com nossa política e a recompensa esperada. Mas nem sempre é possível aproximar a função Q ou nem sempre sua aproximação dá o resultado desejado. Nesses casos, os métodos de aproximação são usados não para funções de utilidade, mas, sim, para uma política (estratégia) direta de ações. E é precisamente a esses métodos que o gradiente de política pertence.
preview
Ciência de Dados e Aprendizado de Máquina — Redes Neurais (Parte 02): Arquitetura das Redes Neurais Feed Forward

Ciência de Dados e Aprendizado de Máquina — Redes Neurais (Parte 02): Arquitetura das Redes Neurais Feed Forward

Há detalhes a serem abordadas na rede neural feed-forward antes de finalizarmos este assunto, a arquitetura é uma delas. Vamos ver como nós podemos construir e desenvolver uma rede neural flexível para as nossas entradas, o número de camadas ocultas e os nós para cada rede.
preview
Redes neurais de maneira fácil (Parte 27): Aprendizado Q profundo (DQN)

Redes neurais de maneira fácil (Parte 27): Aprendizado Q profundo (DQN)

Continuamos nosso estudo sobre aprendizado por reforço. E, neste artigo, vamos nos familiarizar com o método de aprendizado Q profundo. Com esse método, a equipe do DeepMind criou um modelo que pode superar um humano ao jogar jogos do Atari. Acho que será útil avaliar as possibilidades de tal tecnologia para resolver problemas de negociação.
preview
Redes neurais de maneira fácil (Parte 26): aprendizado por reforço

Redes neurais de maneira fácil (Parte 26): aprendizado por reforço

Continuamos a estudar métodos de aprendizado de máquina. Com este artigo, começamos outro grande tópico chamado aprendizado por reforço. Essa abordagem permite que os modelos estabeleçam certas estratégias para resolver as tarefas. E esperamos que essa propriedade inerente ao aprendizado de reforço abra novos horizontes para a construção de estratégias de negociação.
preview
Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado

Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado

Nos dois últimos artigos, criamos uma ferramenta que permite criar e editar modelos de redes neurais. E agora é hora de avaliar o uso potencial da transferência de aprendizado (transfer learning, em inglês) usando exemplos práticos.
preview
Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado

Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado

No último artigo, elaboramos uma ferramenta para criar e editar a arquitetura de redes neurais. E hoje quero convidá-lo a continuar trabalhando nela, para torná-la mais amigável. De certa forma, ao fazer isso, estamos nos afastando um pouco do nosso tópico. Mas convenhamos que a organização do espaço de trabalho desempenha um papel importante na obtenção do resultado.
preview
Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado

Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado

Nesta série de artigos, já mencionamos a transferência de aprendizado mais de uma vez. Mas até agora o assunto não foi além das menções. Sugiro preencher essa lacuna e dar uma olhada mais de perto na transferência de aprendizado.
preview
Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Continuamos a estudar algoritmos de aprendizado não supervisionado. E agora proponho discutir as particularidades por trás do uso de autocodificadores para treinar modelos recorrentes.
preview
Experiências com redes neurais (Parte 2): Otimização inteligente de redes neurais

Experiências com redes neurais (Parte 2): Otimização inteligente de redes neurais

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.