MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
MQL5でインタラクティブなグラフィカルユーザーインターフェイスを作成する(第2回):コントロールと応答性の追加

MQL5でインタラクティブなグラフィカルユーザーインターフェイスを作成する(第2回):コントロールと応答性の追加

ダイナミックな機能でMQL5のGUIパネルを強化することで、ユーザーの取引体験を大幅に向上させることができます。インタラクティブな要素、ホバー効果、リアルタイムのデータ更新を取り入れることで、パネルは現代のトレーダーにとって強力なツールとなるでしょう。
preview
データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク

データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク

前回の記事では、データの長期的な依存関係をうまく捉えられないにもかかわらず、利益を上げる戦略を構築できる単純RNNについて説明しました。この記事では、LSTM (Long-Short Term Memory)とGRU (Gated Recurrent Unit)の両方について説明します。この2つは、単純RNNの欠点を克服し、それを凌駕するために紹介されました。
preview
MetaTrader 5のEMAクロスオーバーに基づくカスケード注文取引戦略

MetaTrader 5のEMAクロスオーバーに基づくカスケード注文取引戦略

この記事は、MetaTrader 5のEMAクロスオーバーに基づく自動化アルゴリズムのデモをガイドしています。価格帯の動作分析からリスク管理まで、MQL5のエキスパートアドバイザー(EA)を示し、MetaTrader 5でテストするためのあらゆる側面に関する詳細情報を含みます。
preview
スマートマネーコンセプト(BOS)とRSI指標をEAに統合する方法

スマートマネーコンセプト(BOS)とRSI指標をEAに統合する方法

市場構造に基づいた情報に基づく自動売買の意思決定を可能にするためには、スマートマネーコンセプト(Break Of Structure: BOS)とRSI指標の組み合わせが有効です。
preview
知っておくべきMQL5ウィザードのテクニック(第27回):移動平均と迎角

知っておくべきMQL5ウィザードのテクニック(第27回):移動平均と迎角

迎角はよく引用される指標で、その急勾配は優勢なトレンドの強さと強い相関があると理解されています。一般的にどのように使用され、理解されているかを調べ、それを使用する取引システムの利益のために、その測定方法に導入可能な変更があるかどうかを検討します。
preview
知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

ハースト指数は、時系列データが長期間にわたってどれだけ自己相関しているかを示す指標です。ハースト指数は、時系列データの長期的な特性を捉えることがわかっているため、経済や金融に限らず、幅広い時系列分析において重要な役割を果たします。本稿では、ハースト指数を移動平均線と組み合わせることで、トレーダーにとって有用なシグナルをどのように得られるかを検討し、その潜在的なメリットに焦点を当てます。
preview
MQL5で日次ドローダウンリミッターEAを作成する

MQL5で日次ドローダウンリミッターEAを作成する

この記事では、取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成方法を、詳細な観点から解説しています。これはMQL5のシステムを自動化し、デイリードローダウンをコントロールするのに役立ちます。
preview
MQLプロジェクトでJSON Data APIを使用する

MQLプロジェクトでJSON Data APIを使用する

MetaTraderにはないデータを使用できることを想像してみてください。価格分析とテクニカル分析による指標からデータを得るだけです。取引力を一段と高めるデータにアクセスできることを想像してみてください。APIデータを通して他のソフトウェア、マクロ分析手法、超高度ツールの出力をMetaTraderを通じてミックスすれば、MetaTraderソフトウェアのパワーを倍増させることができます。この記事では、APIの使い方を教え、便利で価値のあるAPIデータサービスを紹介します。
preview
データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測

データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測

回帰型ニューラルネットワーク(Recurrent Neural Network: RNN)は、過去の情報を活用して将来の出来事を予測することに優れています。その驚くべき予測能力は、さまざまな領域で応用され、大きな成功を収めています。この記事では、外為市場のトレンドを予測するためにRNNモデルを導入し、外為取引における予測精度を高める可能性を示します。
preview
知っておくべきMQL5ウィザードのテクニック(第25回):多時間枠のテストと取引

知っておくべきMQL5ウィザードのテクニック(第25回):多時間枠のテストと取引

アセンブリクラスで使用されているMQL5コードアーキテクチャの制限によって、複数の時間枠に基づく戦略は、デフォルトではウィザードで組み立てられたEAではテストできません。今回は、二次移動平均を使用したケーススタディで、複数の時間枠を使用する戦略について、この制限を回避する可能性を探ります。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

本稿ではWhatsAppとMetaTrader 5を統合して通知する方法を紹介します。理解を容易にするためにフローチャートを掲載し、統合におけるセキュリティ対策の重要性について説明します。指標の主な目的は、自動化によって分析を簡素化することであり、特定の条件が満たされたときにユーザーに警告するための通知方法を含むべきです。詳しくは本稿で説明します。
preview
多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

取引戦略を最適化した後、パラメータのセットを受け取ります。これらを使用して、1つのEAに複数の取引戦略のインスタンスを作成することができます。以前は手動でおこないましたが、ここでは、このプロセスの自動化を試みます。
preview
ニューラルネットワークが簡単に(第81回):Context-Guided Motion Analysis (CCMR)

ニューラルネットワークが簡単に(第81回):Context-Guided Motion Analysis (CCMR)

これまでの作業では、常に環境の現状を評価しました。同時に、指標の変化のダイナミクスは常に「舞台裏」にとどまっていました。この記事では、連続する2つの環境状態間のデータの直接的な変化を評価できるアルゴリズムを紹介したいと思います。
preview
取引戦略の開発を実践する

取引戦略の開発を実践する

この記事では、独自の取引戦略の開発を試みます。どんな取引戦略も、何らかの統計的優位性に基づいていなければなりません。しかも、この利点は長く続くべきです。
preview
ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

この記事では、2024年1月に導入された、グラフ制約のある建築レイアウト生成の複雑な問題を解くためのGTGAN (Graph Transformer Generative Adversarial Model)アルゴリズムについて知ろうと思います。
preview
多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

前回開発中のエキスパートアドバイザー(EA)は、固定されたポジションサイズのみを使用して取引をおこなうことができました。これはテスト用には許容できますが、実際の口座で取引する場合にはお勧めできません。可変のポジションサイズで取引できるようにしましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第24回):移動平均

知っておくべきMQL5ウィザードのテクニック(第24回):移動平均

移動平均は、ほとんどのトレーダーが使用し、理解している非常に一般的な指標です。この記事では、MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、あまり一般的ではないかもしれない使用例を探っていきます。
preview
PythonとMQL5を使用した取引戦略の自動パラメータ最適化

PythonとMQL5を使用した取引戦略の自動パラメータ最適化

取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。
preview
市場力学をマスターする:支持&抵抗戦略エキスパートアドバイザー(EA)の作成

市場力学をマスターする:支持&抵抗戦略エキスパートアドバイザー(EA)の作成

支持&抵抗戦略に基づく自動売買アルゴリズム開発のための包括的ガイドです。MQL5でEAを作成し、MetaTrader 5でテストするための、価格帯行動の分析からリスク管理までのあらゆる側面に関する詳細情報が含まれます。
preview
知っておくべきMQL5ウィザードのテクニック(第23回):CNN

知っておくべきMQL5ウィザードのテクニック(第23回):CNN

畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。
preview
MQL5でゾーン回復マーチンゲール戦略を開発する

MQL5でゾーン回復マーチンゲール戦略を開発する

この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)

今日は、PythonとTelegram Bot APIと連携して、MQL5のパワーを活用した MetaTrader 5指標通知のための実用的なTelegram統合について説明します。ポイントが見逃がされることがないように、すべてを詳細に説明します。このプロジェクトが終了する頃には、ご自分のプロジェクトに応用できる貴重な洞察を得ることができるでしょう。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)

本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。
preview
独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)

ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)

前回の記事では、画像内のオブジェクトを検出する方法の1つを紹介しました。ただし、静的な画像の処理は、私たちが分析する価格のダイナミクスのような動的な時系列の処理とは多少異なります。この記事では、私たちが解決しようとしている問題にやや近い、ビデオ中の物体を検出する方法について考えます。
preview
因果推論における傾向スコア

因果推論における傾向スコア

本稿では、因果推論におけるマッチングについて考察します。マッチングは、データセット内の類似した観測を比較するために使用されます。これは因果関係を正しく判定し、バイアスを取り除くために必要なことです。著者は、訓練されていない新しいデータではより安定する、機械学習に基づく取引システムを構築する際に、これがどのように役立つかを説明しています。傾向スコアは因果推論において中心的な役割を果たし、広く用いられています。
preview
ニューラルネットワークが簡単に(第78回):Transformerを用いたデコーダなしの物体検出器(DFFT)

ニューラルネットワークが簡単に(第78回):Transformerを用いたデコーダなしの物体検出器(DFFT)

この記事では、取引戦略の構築という問題を別の角度から見てみようと思います。将来の値動きを予測するのではなく、過去のデータの分析に基づいた取引システムの構築を試みます。
preview
MetaTraderのMultibot(第2回):動的テンプレートの改良

MetaTraderのMultibot(第2回):動的テンプレートの改良

前回の記事のテーマを発展させ、より柔軟で機能的なテンプレートを作成することにしました。このテンプレートは、より大きな機能を持ち、フリーランスとして、また外部ソリューションとの統合機能を備えた多通貨多期間EAを開発するためのベースとして効果的に使用することができます。
preview
多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。
preview
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
preview
ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る

ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る

この記事では、今後の値動きを予測するというトピックを続けます。Multi-future Transformerのアーキテクチャーをお見せします。その主なアイデアは、未来のマルチモーダル分布をいくつかのユニモーダル分布に分解することで、シーンのエージェント間の相互作用のさまざまなモデルを効果的にシミュレートすることができるというものです。
preview
ニューラルネットワークが簡単に(第74回):適応による軌道予測

ニューラルネットワークが簡単に(第74回):適応による軌道予測

本稿では、様々な環境条件に適応可能なマルチエージェントの軌道予測について、かなり効果的な手法を紹介します。
preview
ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

引き続き、軌道予測モデルを訓練するアルゴリズムについて説明します。この記事では、「AutoBot」と呼ばれるメソッドを紹介します。
preview
ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

前回説明した目標条件付き予測符号化(GCPC)法では、将来の状態予測の質が重要な役割を果たします。この記事では、金融市場のような確率的環境における予測品質を大幅に向上させるアルゴリズムを紹介したいとおもいます。
preview
Break of Structure (BoS)戦略のステップバイステップガイド

Break of Structure (BoS)戦略のステップバイステップガイド

Break of Structure (BoS)戦略に基づく自動売買アルゴリズム開発のための包括的ガイドです。MQL5でエキスパートアドバイザー(EA)を作成し、MetaTrader 5でテストするためのあらゆる側面に関する詳細情報(価格サポートとレジスタンスの分析からリスク管理まで)が含まれています。
preview
知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

敵対的生成ネットワーク(GAN: Generative Adversarial Network)は、より正確な結果を得るために、互いに訓練し合うニューラルネットワークのペアです。ExpertSignalクラスにおける金融時系列の予測への応用の可能性を考慮し、これらのネットワークの条件型を採用します。
preview
どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測

どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測

取引されている銘柄の価格を予測するよりも、特定のテクニカル指標を予測する方が精度が高いことをご存知ですか。この洞察力をより良い取引戦略のために活用する方法を探るために、ぜひお読みください。
preview
MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5で様々なポジション操作を管理するための開発者用ツールキットの作成方法をご紹介します。この記事では、MQL5でポジション管理タスクを処理する際に発生するさまざまなエラーの自動処理とレポートも含め、簡単なものから高度なものまでポジション管理操作を実行する関数ライブラリ(ex5)の作成方法を紹介します。
preview
独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
古典的戦略の再構築:原油

古典的戦略の再構築:原油

この記事では、教師あり機械学習アルゴリズムを活用することで、古典的な原油取引戦略を強化することを目的として、原油取引戦略を再検討します。ブレント原油価格とWTI原油価格のスプレッドに基づいて、将来のブレント原油価格を予測する最小二乗モデルを構築します。目標は、将来のブレント価格変動の先行指標を特定することです。