有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
从 MQL5 向 Discord 发送消息,创建 Discord-MetaTrader 5 机器人

从 MQL5 向 Discord 发送消息,创建 Discord-MetaTrader 5 机器人

与 Telegram 类似,Discord 可以使用其通信 API 以 JSON 格式接收信息和消息。在本文中,我们将探讨如何使用 Discord API 将 MetaTrader 5 的交易信号和更新发送到您的 Discord 交易社区。
preview
交易中的神经网络:二维连接空间模型(Chimera)

交易中的神经网络:二维连接空间模型(Chimera)

本文将探讨创新的 Chimera 框架:利用神经网络分析多元时间序列的二维状态空间模型。该方法具有高精度和低计算成本,优于传统方式和变换器架构。
preview
MQL5 简介(第 17 部分):构建趋势反转 EA 交易

MQL5 简介(第 17 部分):构建趋势反转 EA 交易

本文教初学者如何在 MQL5 中构建一个基于图表形态识别的 EA 交易系统,该系统利用趋势线突破和反转进行交易。通过学习如何动态检索趋势线值并将其与价格走势进行比较,读者将能够开发出能够识别和交易图表形态(如上升和下降趋势线、通道、楔形、三角形等)的 EA 交易。
preview
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
preview
交易中的神经网络:基于 ResNeXt 模型的多任务学习

交易中的神经网络:基于 ResNeXt 模型的多任务学习

基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
preview
使用 MetaTrader 5 Python 构建类似 MQL5 的交易类

使用 MetaTrader 5 Python 构建类似 MQL5 的交易类

MetaTrader 5 Python 包提供了一种使用 Python 语言为 MetaTrader 5 平台构建交易应用程序的简便方法。虽然它是一个强大而有用的工具,但在创建算法交易解决方案方面,该模块不如 MQL5 编程语言那么容易。在本文中,我们将构建类似于 MQL5 中提供的交易类,以创建类似的语法,使在 Python 中创建交易机器人比在 MQL5 中更容易。
preview
在MQL5中创建交易管理员面板(第十一部分):现代化功能通信接口(1)

在MQL5中创建交易管理员面板(第十一部分):现代化功能通信接口(1)

今天,我们将聚焦于升级通信面板的消息交互界面,使其符合现代高性能通信应用的标准。这一改进将通过更新CommunicationsDialog类来实现。欢迎加入本文的探讨与讨论,我们将共同剖析关键要点,并规划使用MQL5推进界面编程的下一步方向。
preview
MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈

MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈

本文通过引入拖拽面板功能和悬停交互效果,对交易助手工具进行全面升级,使界面操作更直观且响应更迅速。我们优化了工具的实时订单验证机制,确保交易参数能根据市场价格动态校准。同时,我们通过回测验证了这些改进的可靠性。
preview
MQL5 简介(第 16 部分):利用技术图表形态构建 EA 交易

MQL5 简介(第 16 部分):利用技术图表形态构建 EA 交易

本文向初学者介绍如何构建一个 MQL5 EA 交易,该系统可以识别和交易经典的技术图表形态 —— 头肩顶形态。它涵盖了如何利用价格行为来检测形态,如何在图表上绘制形态,如何设置入场点、止损点和止盈点,以及如何根据形态自动执行交易。
preview
您应当知道的 MQL5 向导技术(第 56 部分):比尔·威廉姆斯(Bill Williams)分形

您应当知道的 MQL5 向导技术(第 56 部分):比尔·威廉姆斯(Bill Williams)分形

比尔·威廉姆斯(Bill Williams)的分形是一个强有力的指标,在价格图标上初现时很容易被忽视。它出现得过于繁忙,大概也不够精锐。我们的靶标是配以由向导汇编的智能系统针对所有指标进行前向漫游测试,检验其在各种形态下能够取得怎样的成果,从而揭开该指标的面纱。
preview
突破机器学习的局限(第一部分):缺乏可互操作的度量指标

突破机器学习的局限(第一部分):缺乏可互操作的度量指标

无论以何种形式构建可靠的人工智能(AI)交易策略,都有一种强大且普遍存在的力量,正悄然地侵蚀着我们社区的集体努力,本文提到,我们所面临的部分问题,源于对“最优实践”的盲目遵循。通过为读者提供基于现实市场的简单证据,我们说明为何必须摒弃这种做法,转而采用特定领域内的最优实践,这样一来,我们的社区才有可能重振AI的潜在力量。
preview
MQL5交易工具(第一部分):构建交互式可视化挂单交易助手工具

MQL5交易工具(第一部分):构建交互式可视化挂单交易助手工具

本文将介绍如何使用MQL5开发一款交互式交易助手工具,旨在简化外汇交易中的挂单操作流程。我们首先阐述其核心设计理念:通过用户友好的图形界面(GUI),实现图表上直观设置入场点、止损位和止盈位的功能。此外,本文将详细说明MQL5代码实现过程及回测验证方法,确保工具的可靠性,并为后续高级功能开发奠定基础。
preview
您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC

您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC

强化学习中的回放缓冲区对于像 DQN 或 SAC 这样的无政策算法尤为重要。这样就会聚光在该记忆缓冲区的抽样过程。举例,SAC 默认选项从该缓冲区随机选择,而优先经验回放缓冲区则基于 TD 分数从缓冲区中抽样对其优调。我们回顾强化学习的重要性,并一如既往,在由向导汇编的智能系统中验证这一假设(而‘非交叉验证)。
preview
价格行为分析工具包开发(第二十一部分):市场结构反转检测工具

价格行为分析工具包开发(第二十一部分):市场结构反转检测工具

市场结构反转检测智能交易系统(EA) 是您洞察市场情绪变化的得力助手,能够实时监控市场结构的潜在反转信号。该工具通过基于平均真实波幅(ATR)的动态阈值,精准识别市场结构的反转点,并在图表上以清晰的可视化指标标记每一处更高低点和更低高点。依托MQL5的极速执行能力与高度灵活的API接口,该工具提供实时动态分析,可以自动调整显示效果,确保图表清晰易读,并提供实时数据仪表板,实时统计反转次数与时间分布。此外,还支持自定义声音警报和移动端推送通知,确保关键信号无遗漏,通过将原始价格波动转化为可执行的交易策略,帮助您在瞬息万变的市场中抢占先机。
preview
在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面

在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面

本文探讨了动态 MQL5 图形界面,利用双三次插值技术在交易图表上实现高质量的图像缩放。我们详细介绍了灵活的定位选项,支持通过自定义偏移量实现动态居中或位置定位。
preview
MQL5交易策略自动化(第十六部分):基于结构突破(BoS)价格行为的午夜区间突破策略

MQL5交易策略自动化(第十六部分):基于结构突破(BoS)价格行为的午夜区间突破策略

本文将介绍如何在MQL5中实现午夜区间突破结合结构突破(BoS)价格行为策略自动化,并详细说明突破检测与交易执行的代码逻辑。我们为入场、止损和止盈设定了精确的风险参数。包含回测与优化方法,助力实战交易。
preview
MQL5 中的交易策略自动化(第十五部分):可视化价格行为的谐波形态模式

MQL5 中的交易策略自动化(第十五部分):可视化价格行为的谐波形态模式

本文探讨了在 MQL5 中实现谐波形态的自动化,详细介绍了如何在 MetaTrader 5 图表上对其进行检测和可视化。我们将实现一个EA,用于识别摆动点,验证基于斐波那契比率的形态,并通过清晰的图形标注执行交易。文章最后还提供了关于回测和优化程序的指导,以助力有效的交易。
preview
交易中的神经网络:层次化双塔变换器(终篇)

交易中的神经网络:层次化双塔变换器(终篇)

我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
preview
开发多币种 EA 交易(第 24 部分):添加新策略(一)

开发多币种 EA 交易(第 24 部分):添加新策略(一)

在本文中,我们将研究如何将新策略连接到我们创建的自动优化系统。让我们看看我们需要创建哪些类型的 EA,以及是否可以在不更改 EA 库文件的情况下完成,或者尽量减少必要的更改。
preview
在 MQL5 中构建自定义市场状态检测系统(第二部分):智能交易系统(EA)

在 MQL5 中构建自定义市场状态检测系统(第二部分):智能交易系统(EA)

本文详细介绍如何利用第一篇开发的状态检测器,构建一个自适应的智能交易系统(MarketRegimeEA)。该系统能够根据趋势、震荡或高波动市场,自动切换交易策略与风险参数。文中涵盖了实用的参数优化、状态过渡处理以及多时间周期指标的应用。
preview
MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)

MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)

本文将指导您从头开始构建自定义 Heikin Ashi 指标,并演示如何将自定义指标集成到 EA 中。它涵盖了指标计算、交易执行逻辑和风险管理技术,以增强自动化交易策略。
preview
交易中的神经网络:层次化双塔变换器(Hidformer)

交易中的神经网络:层次化双塔变换器(Hidformer)

我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
preview
使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备

使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备

在本文中,我们通过将经济日历数据作为非实盘分析资源嵌入到MQL5交易系统中,为策略测试做好准备。我们实现了按时间、货币和影响程度加载和筛选事件的功能,并在策略测试器中验证其有效性。这使得基于新闻事件的策略能够进行高效的回测。
preview
开发多币种 EA 交易(第 23 部分):整理自动项目优化阶段的输送机(二)

开发多币种 EA 交易(第 23 部分):整理自动项目优化阶段的输送机(二)

我们的目标是创建一个系统,用于自动定期优化最终 EA 中使用的交易策略。随着系统的发展,它变得越来越复杂,因此有必要不时地将其视为一个整体,以确定瓶颈和次优解决方案。
preview
开发多币种 EA 交易(第 22 部分):开始向设置的热插拔过渡

开发多币种 EA 交易(第 22 部分):开始向设置的热插拔过渡

如果要自动进行周期性优化,我们需要考虑自动更新交易账户上已经运行的 EA 设置。这样一来,我们就可以在策略测试器中运行 EA,并在单次运行中更改其设置。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
preview
交易中的神经网络:配备概念强化的多智代系统(终篇)

交易中的神经网络:配备概念强化的多智代系统(终篇)

我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
preview
交易中的神经网络:配备概念强化的多智代系统(FinCon)

交易中的神经网络:配备概念强化的多智代系统(FinCon)

我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
preview
交易中的神经网络:针对金融市场的多模态、扩增工具型智代(终篇)

交易中的神经网络:针对金融市场的多模态、扩增工具型智代(终篇)

我们持续开发 FinAgent 算法,其是一款多模态金融交易智代,旨在分析多模态市场动态数据,以及历史交易形态。
preview
交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

我们邀请您来探索 FinAgent,一个多模态金融交易智代框架,设计用来分析反映市场动态和历史交易形态的各种数据。
preview
将人工智能(AI)模型集成到已有的MQL5交易策略中

将人工智能(AI)模型集成到已有的MQL5交易策略中

本主题聚焦于将训练好的人工智能(AI)模型(如长短期记忆网络(LSTM)等强化学习模型,或基于机器学习的预测模型)集成到现有的MQL5交易策略中。
preview
风险管理(第二部分):在图形界面中实现手数计算

风险管理(第二部分):在图形界面中实现手数计算

在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
preview
交易中的神经网络:具有层化记忆的智代(终篇)

交易中的神经网络:具有层化记忆的智代(终篇)

我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
preview
交易中的神经网络:具有层化记忆的智代

交易中的神经网络:具有层化记忆的智代

模仿人类认知过程的层化记忆方式令复杂金融数据的处理、以及适配新信号成为可能,因此在动态市场中提升投资决策的有效性。
preview
解密开盘区间突破(ORB)日内交易策略

解密开盘区间突破(ORB)日内交易策略

开盘区间突破(ORB)策略基于这样一种理念:市场开盘后不久确立的初始交易区间,反映了买卖双方就价格价值达成共识的重要水平。通过识别突破某一特定区间上方或下方的走势,交易者可以把握随之而来的市场契机——当市场方向愈发明朗时,这种契机往往会进一步显现。本文将探讨三种源自康克瑞图姆集团(Concretum Group)改良的ORB策略。
preview
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。
preview
让手动回测变得简单:为MQL5策略测试器构建自定义工具包

让手动回测变得简单:为MQL5策略测试器构建自定义工具包

在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
preview
探索达瓦斯箱体突破策略中的高级机器学习技术

探索达瓦斯箱体突破策略中的高级机器学习技术

达瓦斯箱体突破策略由尼古拉斯·达瓦斯(Nicolas Darvas)提出,是一种技术交易方法:当股价突破预设的"箱体"区间上沿时,视为潜在买入信号,表明强劲的上升动能。本文将以该策略为例,探讨三种高级机器学习技术的应用。其中包括:利用机器学习模型直接生成交易信号(而非仅过滤交易);采用连续型信号(而非离散型信号);使用基于不同时间框架训练的模型进行交易验证。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。