有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优

随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新

利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新

本文通过实现实时新闻更新来增强我们的经济日历仪表盘,以保持市场信息的时效性和可操作性。我们在 MQL5 中集成了实时数据获取技术,以持续更新仪表盘上的事件,从而提升界面的响应速度。此更新优化确保我们可以直接从仪表盘获取最新的经济新闻,从而基于最新数据优化交易决策。
preview
利用CatBoost机器学习模型作为趋势跟踪策略的过滤器

利用CatBoost机器学习模型作为趋势跟踪策略的过滤器

CatBoost是一种强大的基于树的机器学习模型,擅长基于静态特征进行决策。其他基于树的模型,如XGBoost和随机森林(Random Forest),在稳健性、处理复杂模式的能力以及可解释性方面具有相似特性。这些模型应用广泛,可用于特征分析、风险管理等多个领域。在本文中,我们将逐步介绍如何将训练好的CatBoost模型用作经典移动平均线交叉趋势跟踪策略的过滤器。
preview
交易中的神经网络:双曲型潜在扩散模型(HypDiff)

交易中的神经网络:双曲型潜在扩散模型(HypDiff)

本文研究经由各向异性扩散过程在双曲型潜在空间中编码初始数据的方法。这有助于更准确地保留当前市场状况的拓扑特征,并提升其分析品质。
preview
使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器

使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器

在本文中,我们将在 MQL5 经济日历仪表板中添加过滤器,以便通过货币、重要性和时间来细化新闻事件的显示。我们首先为每个类别建立过滤标准,然后将这些标准集成到仪表板中,以仅显示相关事件。最后,我们确保每个过滤器都能动态更新,为交易者提供专注的、实时的经济信息。
preview
您应当知道的 MQL5 向导技术(第 46 部分):Ichimoku

您应当知道的 MQL5 向导技术(第 46 部分):Ichimoku

Ichimuko Kinko Hyo 是日本著名的指标,可当作趋势识别系统。我们如之前类似文章所为,逐个形态地验证这一点,并借助 MQL5 向导的库类并汇编,来评估其策略和测试报告。
preview
交易中的神经网络:定向扩散模型(DDM)

交易中的神经网络:定向扩散模型(DDM)

在本文中,我们讨论定向扩散模型,其利用数据相关的各向异性、和定向噪声,在前向扩散过程中捕获有意义的图形表征。
preview
创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

在本文中,我们将探讨如何将 Telegram 命令与 MQL5 集成,以自动在交易图表上添加指标。我们涵盖了解析用户命令、在MQL5中执行命令以及测试系统以确保基于指标的交易顺利进行的过程
preview
您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习

您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习

蒙特卡洛是我们正在研究的第四种不同的强化学习算法,目的是探索它在向导汇编智能交易系统中的实现。尽管它锚定在随机抽样,但它提供了我们可以利用的多种模拟方法。
preview
周期与交易

周期与交易

本文将探讨如何在交易中运用周期理论。我们将考虑基于周期模型构建交易策略。
preview
交易中的神经网络:受控分段

交易中的神经网络:受控分段

在本文中。我们将讨论一种复杂的多模态交互分析和特征理解的方法。
preview
交易中的神经网络:节点-自适应图形表征(NAFS)

交易中的神经网络:节点-自适应图形表征(NAFS)

我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。
preview
您应当知道的 MQL5 向导技术(第 44 部分):平均真实范围(ATR)技术指标

您应当知道的 MQL5 向导技术(第 44 部分):平均真实范围(ATR)技术指标

ATR 振荡指标是一款非常流行的指标,权当波动率代表,尤其是在交易量数据稀缺的外汇市场当中。我们以形态为基础来验证这一点,就如我们对先前指标所做那样,并分享策略和测试报告,致谢 MQL5 向导库的类和汇编。
preview
构建K线趋势约束模型(第九部分):多策略EA(2)

构建K线趋势约束模型(第九部分):多策略EA(2)

理论上,可以集成至EA中的策略数量没有上限。然而,每新增一种策略都会提升算法复杂度。通过融合多策略架构,EA能够更灵活地适应不同市场环境,从而可能提升整体盈利能力。今天,我们将探讨如何通过MQL5实现理查德·唐奇安(Richard Donchian)的经典通道突破策略,以此进一步拓展我们的趋势约束型EA功能体系。
preview
如何使用 MetaTrader 和 Google Sheets 创建交易日志

如何使用 MetaTrader 和 Google Sheets 创建交易日志

使用 MetaTrader 和 Google Sheets 创建交易日志!您将学习如何通过 HTTP POST 同步您的交易数据,并使用 HTTP 请求来获取它。最后,您有一个交易日志,可以帮助您有效地跟踪您的交易。
preview
交易中的神经网络:对比形态变换器(终章)

交易中的神经网络:对比形态变换器(终章)

在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
preview
如何将“聪明钱”概念(OB)与斐波那契指标相结合,实现最优进场策略

如何将“聪明钱”概念(OB)与斐波那契指标相结合,实现最优进场策略

SMC(订单块)是机构交易者发起大规模买入或卖出的关键区域。当价格出现显著波动后,借助斐波那契数字可识别从近期波段高点至波段低点的潜在回撤,从而锁定最佳进场位。
preview
创建一个基于布林带PIRANHA策略的MQL5 EA

创建一个基于布林带PIRANHA策略的MQL5 EA

在本文中,我们将创建一个MQL5 EA,它基于PIRANHA策略,并使用布林带来提升交易表现。我们会系统梳理该策略的核心原理、代码实现细节,以及测试与优化方法。并助您轻松将 EA 部署到实际的交易环境中。
preview
交易中的神经网络:对比形态变换器

交易中的神经网络:对比形态变换器

对比变换器在设计上基于单根烛条水平和整个形态来分析行情。这有助于提升行情趋势建模的品质。甚至,运用对比学习来统调烛条和形态的表示、促进自我调节,并提升预测的准确性。
preview
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
preview
交易中的神经网络:运用形态变换器进行市场分析

交易中的神经网络:运用形态变换器进行市场分析

当我们用模型分析市场形势时,我们主要关注蜡烛条。然而,人们早就知道烛条形态能有助于预测未来的价格走势。在本文中,我们将领略一种能将这两种方法集成的方式。
preview
您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

SARSA 是 “State-Action-Reward-State-Action” 的缩写,是另一种能在实现强化学习时运用的算法。故此,正如我们在 Q-学习 和 DQN 中看到的那样,我们考察了如何在向导汇编的智能系统中探索和实现它,将其作为独立模型,而不仅仅是一种训练机制。
preview
交易中的神经网络:具有相对编码的变换器

交易中的神经网络:具有相对编码的变换器

自我监督学习是分析大量无标签数据的有效方法。通过令模型适应金融市场的特定特征来提供效率,这有助于提升传统方法的有效性。本文讲述了一种替代的注意力机制,它参考输入之间的相对依赖关系。
preview
基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

在本文中,我们研究了比尔·威廉姆斯(Bill Williams)的Profitunity系统,深入剖析其核心组成部分以及在混沌市场中独特的交易方法。我们指导读者在MQL5中实现该系统,专注于自动化关键指标和入场/出场信号。最后,我们对策略进行测试和优化,提供其在不同市场环境下的表现。
preview
Connexus观察者模式(第8部分):添加一个观察者请求

Connexus观察者模式(第8部分):添加一个观察者请求

在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。
preview
您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

ADX 是一些交易者用来衡量主流趋势强度的另一个相对热门的技术指标。作为其它两个指标的组合,它体现为振荡器,在本文中我们借助 MQL5 向导汇编、及其支持类,来探索其形态。
preview
交易中的神经网络:受控分段(终章)

交易中的神经网络:受控分段(终章)

我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
preview
使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

在本文中,我们使用MQL5经济日历创建了一个实用的新闻交易面板,来增强我们的交易策略。我们首先设计布局,重点关注事件名称、重要性和时间等关键元素,然后在MQL5中进行设置。最后,我们实现了一个过滤系统,只显示相关性最强的新闻,为交易者快速提供有影响力的经济事件。
preview
基于Python和MQL5的特征工程(第二部分):价格角度

基于Python和MQL5的特征工程(第二部分):价格角度

在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。
preview
交易中的神经网络:广义 3D 引用表达分段

交易中的神经网络:广义 3D 引用表达分段

在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
preview
Connexus请求解析(第六部分):创建HTTP请求与响应

Connexus请求解析(第六部分):创建HTTP请求与响应

在Connexus库系列文章的第六篇中,我们将聚焦于完整的HTTP请求,涵盖构成请求的各个组件。我们将创建一个表示整个请求的类,这将有助于将之前创建的各个类整合在一起。
preview
交易中的神经网络:免掩码注意力方式预测价格走势

交易中的神经网络:免掩码注意力方式预测价格走势

在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。
preview
交易中的神经网络:超点变换器(SPFormer)

交易中的神经网络:超点变换器(SPFormer)

在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
preview
使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能

使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能

在本文中,我们首先要了解其核心功能,探讨如何使用MQL5经济日历进行交易。然后,我们在MQL5中实现经济日历的关键功能,以提取与交易决策相关的新闻数据。最后,我们进行总结,展示如何利用这些信息来有效增强交易策略。
preview
您应当知道的 MQL5 向导技术(第 40 部分):抛物线止损和反转(PSAR)

您应当知道的 MQL5 向导技术(第 40 部分):抛物线止损和反转(PSAR)

抛物线止损和反转(PSAR) 是趋势确认、和趋势终结点的指标。因为它在识别趋势方面滞后,所以它的主要目的是为持仓定位尾随止损。然而,我们要探索它是否真的可以当作智能系统的交易信号,这要归功于由向导汇编智能系统的自定义信号类。
preview
如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

在本文中,我们将聚焦于实现按钮的响应,把静态的 MQL5 面板转变为一个交互式工具。我们将探讨如何自动化 GUI 组件的功能,确保它们能够恰当地响应用户的点击操作。最终,我们将建立一个动态界面,提升交互性和交易体验。
preview
您应当知道的 MQL5 向导技术(第 39 部分):相对强度指数

您应当知道的 MQL5 向导技术(第 39 部分):相对强度指数

RSI 是一款流行的动量震荡指标,衡量证券近期价格变化的速度和规模,从而评估证券价格中被高估和低估的情况。这些对速度和幅度的洞察是定义反转点的关键。我们将这个振荡器放入另一个自定义信号类中工作,并验证其信号的一些特征。不过,我们先从总结我们之前在布林带的内容开始。
preview
创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

在本文中,我们将交互式内联按钮集成到 MQL5 EA 交易中,允许通过 Telegram 进行实时控制。每次按下按钮都会触发特定的操作,并将响应发送回用户。我们还模块化了函数,以便有效地处理 Telegram 消息和回调查询。