MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
既存のMQL5取引戦略へのAIモデルの統合

既存のMQL5取引戦略へのAIモデルの統合

このトピックでは、強化学習モデル(LSTMなど)や機械学習ベースの予測モデルのような訓練済みAIモデルを、既存のMQL5取引戦略に組み込むことに焦点を当てています。
preview
オープニングレンジブレイクアウト日中取引戦略の解読

オープニングレンジブレイクアウト日中取引戦略の解読

オープニングレンジブレイクアウト(ORB)戦略は、市場が開いた直後に形成される初期の取引レンジが、買い手と売り手が価値に合意する重要な価格レベルを反映しているという考えに基づいて構築されています。特定のレンジを上抜けまたは下抜けするブレイクアウトを特定することで、市場の方向性が明確になるにつれて発生することが多いモメンタムを利用し、トレーダーは利益を狙うことができます。本記事では、Concretum Groupの論文から応用した3つのORB戦略を紹介します。
preview
手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する

手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する

この記事では、ストラテジーテスターでの手動バックテストを簡単におこなうための、カスタムMQL5ツールキットの設計について紹介します。設計と実装に焦点を当て、特にインタラクティブな取引操作の仕組みについて詳しく解説します。その後、このツールキットを使って、戦略を効果的にテストする方法を実演します。
preview
MQL5での取引戦略の自動化(第14回):MACD-RSI統計手法を用いた取引レイヤリング戦略

MQL5での取引戦略の自動化(第14回):MACD-RSI統計手法を用いた取引レイヤリング戦略

この記事では、MACDおよびRSIインジケーターと統計的手法を組み合わせた取引レイヤリング戦略を紹介します。このアプローチは、MQL5による自動売買において、ポジションを動的にスケーリングすることを目的としています。カスケード構造による戦略のアーキテクチャを解説し、主要なコードセグメントを通じて実装方法を詳述します。さらに、パフォーマンスを最適化するためのバックテスト手順についても案内します。最後に、この戦略が持つ可能性と、今後の自動売買戦略への発展性について考察します。
preview
ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する

ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する

本記事では、ポートフォリオレベルの統計的アービトラージの基本的な概念を紹介します。数学の深い知識がない読者にも理解しやすく説明し、実際の運用を始めるためのコンセプトフレームワークを提案することを目的としています。記事には、動作するエキスパートアドバイザー(EA)と、1年間のバックテストに関する注記、再現用の設定ファイル(.iniファイル)も含まれています。
preview
知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

知っておくべきMQL5ウィザードのテクニック(第59回):移動平均とストキャスティクスのパターンを用いた強化学習(DDPG)

MAとストキャスティクスを使用したDDPGに関する前回の記事に引き続き、今回は、DDPGの実装に欠かせない他の重要な強化学習クラスを検証していきます。主にPythonでコーディングしていますが、最終的には訓練済みネットワークをONNX形式でエクスポートし、MQL5に組み込んでウィザードで構築したエキスパートアドバイザー(EA)のリソースとして統合します。
preview
MQL5での取引戦略の自動化(第13回):三尊天井取引アルゴリズムの構築

MQL5での取引戦略の自動化(第13回):三尊天井取引アルゴリズムの構築

この記事では、三尊天井(Head and Shoulders)パターンの検出と売買をMQL5で自動化します。その構造を分析し、検出および取引をおこなうエキスパートアドバイザー(EA)を実装し、バックテストでその結果を検証します。このプロセスを通じて、改良の余地を残しつつも実用的な取引アルゴリズムが明らかになります。
preview
知っておくべきMQL5ウィザードのテクニック(第58回):移動平均と確率的オシレーターパターンを用いた強化学習(DDPG)

知っておくべきMQL5ウィザードのテクニック(第58回):移動平均と確率的オシレーターパターンを用いた強化学習(DDPG)

移動平均とストキャスティクスはよく使われるインジケーターで、前回の記事ではこの2つの組み合わせパターンを教師あり学習ネットワークで分析して、どのパターンが使えそうかを確認しました。今回はそこから一歩進めて、訓練済みネットワークに強化学習を組み合わせたらパフォーマンスにどんな影響があるかを見ていきます。テスト期間はかなり短いので、その点は踏まえておいてください。とはいえ、今回もMQL5ウィザードのおかげで、コード量はかなり少なくて済んでいます。
preview
MQL5での取引戦略の自動化(第12回):Mitigation Order Blocks (MOB)戦略の実装

MQL5での取引戦略の自動化(第12回):Mitigation Order Blocks (MOB)戦略の実装

本記事では、スマートマネー取引向けにオーダーブロックの自動検出をおこなうMQL5取引システムを構築します。戦略のルールを明確にし、そのロジックをMQL5で実装し、さらに取引を効果的に執行するためにリスク管理も統合します。最後に、システムのパフォーマンスを評価するためにバックテストをおこない、最適な結果を得るための改良を加えます。
preview
データサイエンスとML(第35回):MQL5でのNumPy活用術 - 少ないコードで複雑なアルゴリズムを構築する技法

データサイエンスとML(第35回):MQL5でのNumPy活用術 - 少ないコードで複雑なアルゴリズムを構築する技法

NumPyライブラリは、Pythonプログラミング言語においてほぼすべての機械学習アルゴリズムの中核を支えています。本記事では、高度なモデルやアルゴリズムの構築を支援するために、複雑なコードをまとめたモジュールを実装していきます。
preview
プライスアクション分析ツールキットの開発(第18回):クォーターズ理論の紹介(III) - Quarters Board

プライスアクション分析ツールキットの開発(第18回):クォーターズ理論の紹介(III) - Quarters Board

この記事では、元のQuarters Scriptを改良し、「Quarters Board」というツールを導入しています。これにより、コードを編集し直すことなく、チャート上でクォーターレベルを直接オン・オフできるようになります。特定のレベルを簡単に有効化・無効化できるほか、エキスパートアドバイザー(EA)はトレンド方向に関するコメントも提供し、市場の動きをより理解しやすくします。
preview
ダーバスボックスブレイクアウト戦略における高度な機械学習技術の探究

ダーバスボックスブレイクアウト戦略における高度な機械学習技術の探究

ニコラス・ダーバスによって考案された「ダーバスボックスブレイクアウト戦略」は、株価が一定の「ボックス」レンジを上抜けたときに強い上昇モメンタムが示唆されることから、買いシグナルを見極めるためのテクニカル取引手法です。本記事では、この戦略コンセプトを例として用い、機械学習の3つの高度な技術を探っていきます。それは、取引をフィルタリングするのではなくシグナルを生成するために機械学習モデルを使用すること、離散的ではなく連続的なシグナルを用いること、異なる時間枠で学習されたモデルを使って取引を確認すること、の3点です。
preview
MQL5で取引管理者パネルを作成する(第9回):コード編成(III)コミュニケーションモジュール

MQL5で取引管理者パネルを作成する(第9回):コード編成(III)コミュニケーションモジュール

MQL5インターフェイス設計における最新の進展を、再設計されたコミュニケーションパネルの公開とともに詳しく解説します。また、モジュール化の原則に基づいて新しい管理パネルを構築するシリーズも引き続き展開していきます。この記事では、CommunicationsDialogクラスを段階的に開発し、それをDialogクラスから継承する方法を丁寧に解説します。さらに、開発には配列およびListViewクラスを活用します。MQL5開発スキルを高めるための実用的な知見を得るために、ぜひ記事を読み、コメント欄でディスカッションにご参加ください。
preview
MQL5での取引戦略の自動化(第11回):マルチレベルグリッド取引システムの開発

MQL5での取引戦略の自動化(第11回):マルチレベルグリッド取引システムの開発

本記事では、MQL5を使用してマルチレベルのグリッド取引システムEAを開発し、グリッド取引戦略の背後にあるアーキテクチャとアルゴリズム設計に焦点を当てます。複数層にわたるグリッドロジックの実装と、市場のさまざまな状況に対応するためのリスク管理手法について探ります。最後に、自動売買システムの構築・テスト・改善をおこなうための詳細な説明と実践的なヒントを提供します。
preview
知っておくべきMQL5ウィザードのテクニック(第56回):ビル・ウィリアムズフラクタル

知っておくべきMQL5ウィザードのテクニック(第56回):ビル・ウィリアムズフラクタル

ビル・ウィリアムズによるフラクタルは、最初にチャート上で目にしたときには見落とされがちな強力なインジケーターです。一見するとチャートが煩雑に見え、鋭さに欠けるように思えるかもしれません。この記事では、このインジケーターの覆いを取り払い、そのさまざまなパターンがどのように機能するのかを、MQL5ウィザードで組み上げたエキスパートアドバイザー(EA)によるフォワードウォークテストを通じて検証していきます。
preview
MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)

MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)

この記事では、カスタムの平均足インジケーターをゼロから作成する方法を解説し、カスタムインジケーターをエキスパートアドバイザー(EA)に組み込む方法も紹介します。インジケーターの計算方法、取引実行ロジック、リスク管理の手法についても取り上げ、自動売買戦略の向上を目指します。
preview
PythonとMQL5による多銘柄分析(第3回):三角為替レート

PythonとMQL5による多銘柄分析(第3回):三角為替レート

トレーダーは、誤ったシグナルによるドローダウンに直面することが多い一方で、確認を待ちすぎることで、有望な機会を逃すこともあります。本稿では、ドル建て銀価格(XAGUSD)、ユーロ建て銀価格(XAGEUR)、およびEURUSD為替レートを用いた三角裁定取引戦略を紹介し、市場のノイズをフィルタリングする方法を解説します。市場間の相関関係を活用することで、隠れた市場センチメントをリアルタイムで捉え、エントリータイミングをより洗練させることが可能になります。
preview
MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発

MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発

この記事では、「トレンドフラットモメンタム(Trend Flat Momentum)戦略」のためのエキスパートアドバイザー(EA)をMQL5で開発します。移動平均線のクロスオーバーに、RSI(相対力指数)とCCI(商品チャネル指数)といったモメンタム系のフィルターを組み合わせて、トレードシグナルを生成します。また、バックテストの方法や、実運用でのパフォーマンス向上のための改善案についても取り上げます。
preview
プライスアクション分析ツールキットの開発(第15回):クォーターズ理論の紹介(I) - Quarters Drawerスクリプト

プライスアクション分析ツールキットの開発(第15回):クォーターズ理論の紹介(I) - Quarters Drawerスクリプト

サポートとレジスタンスのポイントは、トレンドの反転や継続の可能性を示す重要なレベルです。これらのレベルを見つけるのは難しいこともありますが、一度特定できれば、市場をより的確に捉える準備が整います。さらなるサポートとして、本記事で紹介されているQuarters Drawerツールをぜひご活用ください。このツールは、主要およびマイナーなサポート・レジスタンスレベルの特定に役立ちます。
preview
MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

本記事では、MQL5経済指標カレンダーを活用して、ユーザー定義のフィルターと時間オフセットに基づいた自動取引エントリーを実装します。対象となる経済指標イベントを検出し、予想値と前回値の比較により、買うか売るかの判断を下します。動的なカウントダウンタイマーは、ニュース公開までの残り時間を表示し、取引後には自動的にリセットされます。
preview
知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

知っておくべきMQL5ウィザードのテクニック(第55回):PER付きSAC

強化学習において、リプレイバッファは特にDQNやSACのようなオフポリシーアルゴリズムにおいて重要な役割を果たします。これにより、メモリバッファのサンプリング処理が注目されます。たとえばSACのデフォルト設定では、このバッファからランダムにサンプルを取得しますが、Prioritized Experience Replay (PER)を用いることで、TDスコア(時間差分誤差)に基づいてサンプリングを調整することができます。本稿では、強化学習の意義を改めて確認し、いつものように交差検証ではなく、この仮説だけを検証する、ウィザードで組み立てたエキスパートアドバイザー(EA)を用いて考察します。
preview
MQL5での取引戦略の自動化(第9回):アジアブレイクアウト戦略のためのエキスパートアドバイザーの構築

MQL5での取引戦略の自動化(第9回):アジアブレイクアウト戦略のためのエキスパートアドバイザーの構築

この記事では、アジアブレイクアウト戦略のためのエキスパートアドバイザー(EA)をMQL5で構築します。セッション中の高値と安値を計算し、移動平均によるトレンドフィルタリングをおこないます。また、動的なオブジェクトスタイリング、ユーザー定義の時間入力、堅牢なリスク管理も実装します。最後に、プログラムの精度を高めるためのバックテストおよび最適化手法を紹介します。
preview
MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築

MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築

この記事では、バタフライハーモニックパターンを検出するためのMQL5エキスパートアドバイザー(EA)を構築します。ピボットポイントを特定し、フィボナッチレベルを検証してパターンを確認します。次に、チャート上にパターンを可視化し、確認された際には自動的に取引を実行します。
preview
MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

この記事では、動的なロットスケーリングを採用したMQL5のグリッドトレーディングエキスパートアドバイザー(EA)を構築します。戦略の設計、コードの実装、バックテストのプロセスについて詳しく解説します。最後に、自動売買システムを最適化するための重要な知見とベストプラクティスを共有します。
preview
知っておくべきMQL5ウィザードのテクニック(第54回):SACとテンソルのハイブリッドによる強化学習

知っておくべきMQL5ウィザードのテクニック(第54回):SACとテンソルのハイブリッドによる強化学習

Soft Actor Critic (SAC)は、以前の記事で紹介した強化学習アルゴリズムです。その際には、効率的にネットワークを学習させる手法としてPythonやONNXの活用についても触れました。今回は、このアルゴリズムを改めて取り上げ、Pythonでよく使われるテンソルや計算グラフを活用することを目的としています。
preview
MQL5での取引戦略の自動化(第6回):スマートマネートレーディングのためのオーダーブロック検出の習得

MQL5での取引戦略の自動化(第6回):スマートマネートレーディングのためのオーダーブロック検出の習得

この記事では、純粋なプライスアクション分析を用いてMQL5でオーダーブロック検出を自動化します。オーダーブロックの定義、検出の実装、自動売買への統合をおこない、最後に戦略のバックテストを通じてパフォーマンスを評価します。
preview
エキスパートアドバイザーの堅牢性テスト

エキスパートアドバイザーの堅牢性テスト

戦略開発には、多くの複雑な要素が含まれていますが、これらの多くは初心者トレーダーには十分に伝えられていません。その結果、私自身を含め多くのトレーダーが、こうした教訓を痛みを伴う経験を通じて学ぶことになりました。この記事では、MQL5で戦略を開発する際に初心者トレーダーが直面しがちな一般的な落とし穴について、私の観察に基づいて解説します。EAの信頼性を見極め、簡単に実践できる方法で自作EAの堅牢性を検証するための、さまざまなヒントやコツ、具体例を紹介します。本記事の目的は、読者がEA購入時の詐欺を回避し、自身の戦略開発での失敗を未然に防げるよう支援することです。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標

PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標

この記事では、あらゆる市場における価格レベルの変化を、それに対応する角度の変化へと変換する2回目の試みをおこないます。今回は、前回よりも数学的に洗練されたアプローチを採用しました。得られた結果は、アプローチを変更した判断が正しかった可能性を示唆しています。本日は、どの市場を分析する場合でも、極座標を用いて価格レベルの変化によって形成される角度を意味のある方法で計算する方法についてご説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)

知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)

MFI(Market Facilitation Index、マーケットファシリテーションインデックス)は、ビル・ウィリアムズによる指標の一つで、出来高と連動した価格変動の効率性を測定することを目的としています。いつものように、本記事では、ウィザードアセンブリシグナルクラスの枠組みにおいて、このインジケーターのさまざまなパターンを検証し、それに基づいたテストレポートおよび分析結果を紹介します。
preview
MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発

MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発

この記事では、14期間および50期間の移動平均クロスオーバーをシグナルとして使用し、14期間RSIフィルターで確認するAdaptive Crossover RSI Trading Suiteシステムを開発します。本システムには取引日フィルター、注釈付きのシグナル矢印、監視用のリアルタイムダッシュボードが含まれており、このアプローチにより自動取引の精度と適応性が向上します。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール

MQL5で自己最適化エキスパートアドバイザーを構築する(第5回):自己適応型取引ルール

インジケーターを安全に使用する方法を定義したベストプラクティスに従うのは、必ずしも容易ではありません。市場の動きが穏やかな状況では、インジケーターが意図した通りのシグナルを発しないことがあり、その結果、アルゴリズム取引における貴重なチャンスを逃してしまう可能性があります。本稿では、この問題に対する潜在的な解決策として、利用可能な市場データに応じて取引ルールを適応させることが可能な取引アプリケーションの構築方法を提案します。
preview
MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築

MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築

この記事では、RSI(相対力指数)を活用して取引シグナルを生成する、MQL5によるMulti-Level Zone Recoveryシステムの開発について解説します。本システムでは、各シグナルインスタンスを動的に配列構造に追加し、Zone Recoveryロジックの中で複数のシグナルを同時に管理することが可能になります。このアプローチにより、スケーラブルかつ堅牢なコード設計を維持しながら、複雑な取引管理シナリオに柔軟かつ効果的に対応できる方法を紹介します。
preview
独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト

独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
逆フェアバリューギャップ取引戦略

逆フェアバリューギャップ取引戦略

逆フェアバリューギャップ(IFVG)とは、価格が過去に特定されたフェアバリューギャップ(FVG)へ回帰した際に、通常想定されるサポートまたはレジスタンスとしての反応を示さず、その水準を無視して通過してしまう現象を指します。このような失敗は、市場の方向性の変調を示すサインである可能性があり、逆張り志向の取引アプローチにおいて優位性をもたらすシグナルとなることがあります。本記事では、MetaTrader 5エキスパートアドバイザー(EA)の戦略として、この逆フェアバリューギャップを定量的に捉え、取引ロジックに組み込むために私が独自に開発したアプローチを紹介します。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整

MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整

アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。
preview
MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)

MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)

RSI、MA、ストキャスティクスなどの複数のインジケーターを使用してMQL5でエキスパートアドバイザー(EA)を開発し、隠れた強気および弱気のダイバージェンスを検出する方法を学びます。教育目的で、詳細な例および完全にコメントされたソースコードを用いて、効果的なリスク管理を実装し、取引を自動化する方法をご紹介します。
preview
MQL5でカレンダーベースのニュースイベントブレイクアウトエキスパートアドバイザーを開発する

MQL5でカレンダーベースのニュースイベントブレイクアウトエキスパートアドバイザーを開発する

ボラティリティは、影響力の大きいニュースイベントの周辺でピークに達する傾向があり、大きなブレイクアウトの機会を生み出します。本記事では、カレンダーを基にしたブレイクアウト戦略の実装プロセスについて説明します。カレンダーデータを解釈・保存するためのクラスの作成、これを活用した現実的なバックテストの開発、そして最終的にライブ取引用の実行コードの実装までを一貫して解説します。
preview
MQL5でSHA-256暗号化アルゴリズムをゼロから実装する

MQL5でSHA-256暗号化アルゴリズムをゼロから実装する

これまで、DLLを使用せずに暗号通貨取引所との統合を構築することは長らく課題とされてきました。しかし、本ソリューションは、市場へ直接接続するための包括的なフレームワークを提供します。
preview
流動性狩り取引戦略

流動性狩り取引戦略

流動性狩り(Liquidity Grab)取引戦略は、市場における機関投資家の行動を特定し、それを活用することを目指すSmart Money Concepts(SMC)の重要な要素です。これには、サポートゾーンやレジスタンスゾーンなどの流動性の高い領域をターゲットにすることが含まれます。市場がトレンドを再開する前に、大量の注文によって一時的な価格変動が引き起こされます。この記事では、流動性狩りの概念を詳しく説明し、MQL5による流動性狩り取引戦略エキスパートアドバイザー(EA)の開発プロセスの概要を紹介します。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

前回の記事で開始した、MQL5を使用したRefMask3Dフレームワークの構築作業を引き続き進めていきます。このフレームワークは、点群におけるマルチモーダルインタラクションと特徴量解析を包括的に研究し、自然言語で提供される説明に基づいてターゲットオブジェクトを特定・識別することを目的としています。