MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
MQL5でゾーン回復マーチンゲール戦略を開発する

MQL5でゾーン回復マーチンゲール戦略を開発する

この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)

今日は、PythonとTelegram Bot APIと連携して、MQL5のパワーを活用した MetaTrader 5指標通知のための実用的なTelegram統合について説明します。ポイントが見逃がされることがないように、すべてを詳細に説明します。このプロジェクトが終了する頃には、ご自分のプロジェクトに応用できる貴重な洞察を得ることができるでしょう。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)

本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。
preview
独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)

ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)

前回の記事では、画像内のオブジェクトを検出する方法の1つを紹介しました。ただし、静的な画像の処理は、私たちが分析する価格のダイナミクスのような動的な時系列の処理とは多少異なります。この記事では、私たちが解決しようとしている問題にやや近い、ビデオ中の物体を検出する方法について考えます。
preview
因果推論における傾向スコア

因果推論における傾向スコア

本稿では、因果推論におけるマッチングについて考察します。マッチングは、データセット内の類似した観測を比較するために使用されます。これは因果関係を正しく判定し、バイアスを取り除くために必要なことです。著者は、訓練されていない新しいデータではより安定する、機械学習に基づく取引システムを構築する際に、これがどのように役立つかを説明しています。傾向スコアは因果推論において中心的な役割を果たし、広く用いられています。
preview
ニューラルネットワークが簡単に(第78回):Transformerを用いたデコーダなしの物体検出器(DFFT)

ニューラルネットワークが簡単に(第78回):Transformerを用いたデコーダなしの物体検出器(DFFT)

この記事では、取引戦略の構築という問題を別の角度から見てみようと思います。将来の値動きを予測するのではなく、過去のデータの分析に基づいた取引システムの構築を試みます。
preview
MetaTraderのMultibot(第2回):動的テンプレートの改良

MetaTraderのMultibot(第2回):動的テンプレートの改良

前回の記事のテーマを発展させ、より柔軟で機能的なテンプレートを作成することにしました。このテンプレートは、より大きな機能を持ち、フリーランスとして、また外部ソリューションとの統合機能を備えた多通貨多期間EAを開発するためのベースとして効果的に使用することができます。
preview
多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。
preview
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
preview
ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る

ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る

この記事では、今後の値動きを予測するというトピックを続けます。Multi-future Transformerのアーキテクチャーをお見せします。その主なアイデアは、未来のマルチモーダル分布をいくつかのユニモーダル分布に分解することで、シーンのエージェント間の相互作用のさまざまなモデルを効果的にシミュレートすることができるというものです。
preview
ニューラルネットワークが簡単に(第74回):適応による軌道予測

ニューラルネットワークが簡単に(第74回):適応による軌道予測

本稿では、様々な環境条件に適応可能なマルチエージェントの軌道予測について、かなり効果的な手法を紹介します。
preview
ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

引き続き、軌道予測モデルを訓練するアルゴリズムについて説明します。この記事では、「AutoBot」と呼ばれるメソッドを紹介します。
preview
ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

前回説明した目標条件付き予測符号化(GCPC)法では、将来の状態予測の質が重要な役割を果たします。この記事では、金融市場のような確率的環境における予測品質を大幅に向上させるアルゴリズムを紹介したいとおもいます。
preview
Break of Structure (BoS)戦略のステップバイステップガイド

Break of Structure (BoS)戦略のステップバイステップガイド

Break of Structure (BoS)戦略に基づく自動売買アルゴリズム開発のための包括的ガイドです。MQL5でエキスパートアドバイザー(EA)を作成し、MetaTrader 5でテストするためのあらゆる側面に関する詳細情報(価格サポートとレジスタンスの分析からリスク管理まで)が含まれています。
preview
知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

敵対的生成ネットワーク(GAN: Generative Adversarial Network)は、より正確な結果を得るために、互いに訓練し合うニューラルネットワークのペアです。ExpertSignalクラスにおける金融時系列の予測への応用の可能性を考慮し、これらのネットワークの条件型を採用します。
preview
どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測

どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測

取引されている銘柄の価格を予測するよりも、特定のテクニカル指標を予測する方が精度が高いことをご存知ですか。この洞察力をより良い取引戦略のために活用する方法を探るために、ぜひお読みください。
preview
MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5で様々なポジション操作を管理するための開発者用ツールキットの作成方法をご紹介します。この記事では、MQL5でポジション管理タスクを処理する際に発生するさまざまなエラーの自動処理とレポートも含め、簡単なものから高度なものまでポジション管理操作を実行する関数ライブラリ(ex5)の作成方法を紹介します。
preview
独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
古典的戦略の再構築:原油

古典的戦略の再構築:原油

この記事では、教師あり機械学習アルゴリズムを活用することで、古典的な原油取引戦略を強化することを目的として、原油取引戦略を再検討します。ブレント原油価格とWTI原油価格のスプレッドに基づいて、将来のブレント原油価格を予測する最小二乗モデルを構築します。目標は、将来のブレント価格変動の先行指標を特定することです。
preview
予測による統計的裁定取引

予測による統計的裁定取引

統計的裁定取引について調べ、共和分で相関する銘柄をPythonで検索し、ピアソン係数の指標を作成し、PythonとONNX モデルで予測をおこなって統計的裁定取引を行うEAを作成します。
preview
知っておくべきMQL5ウィザードのテクニック(第20回):関数同定問題

知っておくべきMQL5ウィザードのテクニック(第20回):関数同定問題

関数同定問題は、研究対象のデータセットをマッピングする基本モデルがどのようなものであるかについて、最小限の仮定から始める回帰の形式です。ベイズ法やニューラルネットワークでも実装可能ですが、ここでは遺伝的アルゴリズムによる実装が、MQL5ウィザードで使用可能なExpertSignalクラスのカスタマイズにどのように役立つかを見ていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

ベイズ推定とは、新しい情報が入手可能になったときに確率仮説を更新するためにベイズの定理を採用することです。これは直感的に時系列分析への適応につながるので、シグナルだけでなく、資金管理やトレーリングストップのためのカスタムクラスを構築する際に、これをどのように利用できるか見てみましょう。
preview
Candlestick Trend Constraintモデルの構築(第3回):使用中のトレンド変化の検出

Candlestick Trend Constraintモデルの構築(第3回):使用中のトレンド変化の検出

この記事では、経済ニュースの発表、投資家の行動、さまざまな要因が市場のトレンド反転にどのような影響を与えるかを探ります。ビデオによる説明もあり、MQL5のコードをプログラムに組み込むことで、トレンドの反転を検出し、警告を発し、市場の状況に応じて適切な行動を取ることができます。これは、本連載の過去の記事に基づいています。
preview
MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

この第4部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルグリッドEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。
preview
MQL5入門(第7回):MQL5でEAを構築し、AI生成コードを活用するための初心者ガイド

MQL5入門(第7回):MQL5でEAを構築し、AI生成コードを活用するための初心者ガイド

この記事は、MQL5でエキスパートアドバイザー(EA)を構築するための包括的な、究極の初心者ガイドです。擬似コードを使用してEAを構築し、AIが生成したコードのパワーを活用する方法をステップごとに学びましょう。アルゴリズム取引が初めての方にも、スキルアップを目指す方にも、このガイドは効果的なEAを作成するための明確な道筋を提供します。
preview
多通貨エキスパートアドバイザーの開発(第2回):取引戦略の仮想ポジションへの移行

多通貨エキスパートアドバイザーの開発(第2回):取引戦略の仮想ポジションへの移行

複数の戦略を並行して動作させる多通貨エキスパートアドバイザー(EA)の開発を続けましょう。マーケットポジションを建てることに関連するすべての作業を、戦略レベルから、戦略を管理するEAのレベルに移してみましょう。戦略自体は、マーケットポジションを持つことなく、仮想の取引のみをおこないます。
preview
ニューラルネットワークが簡単に(第75回):軌道予測モデルのパフォーマンス向上

ニューラルネットワークが簡単に(第75回):軌道予測モデルのパフォーマンス向上

私たちが作成するモデルはより大きく、より複雑になっています。そのため、訓練だけでなく、運用にもコストがかかります。しかし、決断に要する時間はしばしば重要です。この観点から、品質を損なうことなくモデルのパフォーマンスを最適化する手法を考えてみましょう。
preview
母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

前回に引き続き、社会的集団について考えてみたいと思います。この記事では、移動と記憶のアルゴリズムを用いて社会集団の進化を探求しています。その結果は、社会システムの進化を理解し、最適化や解の探索に応用するのに役立つでしょう。
preview
最適化アルゴリズムを使用してEAパラメータをオンザフライで設定する

最適化アルゴリズムを使用してEAパラメータをオンザフライで設定する

この記事では、最適化アルゴリズムを使用して最適なEAパラメータをオンザフライで見つけることや、取引操作とEAロジックの仮想化について、実践的な側面から論じています。この記事は、最適化アルゴリズムをEAに実装するためのインストラクションとして使用できます。
preview
多通貨エキスパートアドバイザーの開発(第3回):アーキテクチャの改訂

多通貨エキスパートアドバイザーの開発(第3回):アーキテクチャの改訂

複数の戦略が並行して動作する多通貨EAの開発はすでにある程度進んでいます。蓄積された経験を考慮し、先に進みすぎる前に、ソリューションのアーキテクチャを見直し、改善を試みましょう。
preview
取引におけるトレーリングストップ

取引におけるトレーリングストップ

この記事では、取引でのトレーリングストップの使い方について説明します。トレーリングストップがどの程度有用で効果的なのか、どのように利用できるのかを評価します。トレーリングストップの効率は、価格のボラティリティと損切りレベルの選択に大きく左右されます。損切りを設定するには、さまざまなアプローチを用いることができます。
preview
フリーランスサービスでトレーダーから受注して収入を得る方法

フリーランスサービスでトレーダーから受注して収入を得る方法

MQL5フリーランスは、開発者がトレーダー顧客のために取引アプリケーションを作成して報酬を得ることができるオンラインサービスです。このサービスは2010年以来成功裏に運営されており、これまでに10万件以上のプロジェクトが完了し、その総額は700万ドルに達しています。ご覧の通り、相当な額の資金が絡んでいます。
preview
多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

取引戦略にはさまざまなものがあります。リスクを分散し、取引結果の安定性を高めるためには、複数の戦略を並行して適用することが有効かもしれません。ただし、それぞれのストラテジーが個別のエキスパートアドバイザー(EA)として実装されている場合、1つの取引口座でそれらの作業を管理することは非常に難しくなります。この問題を解決するのに合理的なのは、1つのEAで異なる取引戦略の運用を実装することです。
preview
ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)

ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)

前回の記事では、Decision Transformer法と、そこから派生したいくつかのアルゴリズムについて説明しました。さまざまな目標設定手法で実験しました。実験では、さまざまな方法で目標を設定しましたが、それ以前に通過した軌跡に関するモデルの研究は、常に私たちの関心の外にありました。この記事では、このギャップを埋める手法を紹介したいと思います。
preview
ニューラルネットワークが簡単に(第70回):閉形式方策改善演算子(CFPI)

ニューラルネットワークが簡単に(第70回):閉形式方策改善演算子(CFPI)

この記事では、閉形式の方策改善演算子を使用して、オフラインモードでエージェントの行動を最適化するアルゴリズムを紹介します。
preview
ニューラルネットワークが簡単に(第69回):密度に基づく行動方策の支持制約(SPOT)

ニューラルネットワークが簡単に(第69回):密度に基づく行動方策の支持制約(SPOT)

オフライン学習では、固定されたデータセットを使用するため、環境の多様性をカバーする範囲が制限されます。学習過程において、私たちのエージェントはこのデータセットを超える行動を生成することができます。環境からのフィードバックがなければ、そのような行動の評価が正しいとどうやって確信できるのでしょうか。訓練データセット内のエージェントの方策を維持することは、訓練の信頼性を確保するために重要な要素となります。これが、この記事でお話しする内容です。
preview
Candlestick Trend Constraintモデルの構築(第2回):ネイティブ指標の結合

Candlestick Trend Constraintモデルの構築(第2回):ネイティブ指標の結合

この記事では、トレンドから外れたシグナルを選別するために、MetaTrader 5指標を活用することに焦点を当てます。前回に引き続き、MQL5コードを使用してアイデアを最終的なプログラムに伝える方法を探っていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第17回):多通貨取引

知っておくべきMQL5ウィザードのテクニック(第17回):多通貨取引

ウィザードを介してEAが組み立てられた場合、デフォルトでは複数の通貨をまたいだ取引は利用できません。トレーダーが一度に複数の銘柄から自分のアイデアをテストする際に、2つの可能なトリックを検討します。
preview
Candlestick Trend Constraintモデルの構築(第1回):EAとテクニカル指標について

Candlestick Trend Constraintモデルの構築(第1回):EAとテクニカル指標について

この記事は初心者とプロMQL5開発者の両方を対象としています。これは、シグナルを生成する指標をより長い時間枠のトレンドに定義し、制約するためのコードの一部を提供します。このように、トレーダーはより広い市場視点を取り入れることで戦略を強化することができ、より強固で信頼性の高い売買シグナルが得られる可能性があります。