Desarrollo de un sistema de repetición (Parte 69): Ajuste del tiempo (II)
Aquí entenderemos por qué necesitamos utilizar la función iSpread. Al mismo tiempo, comprenderemos cómo el sistema nos informa del tiempo restante de la barra cuando no hay ticks disponibles para hacerlo. El contenido presentado aquí tiene como único propósito la enseñanza y la didáctica. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Del básico al intermedio: Arrays y cadenas (I)
En este artículo, empezaremos a explorar algunos tipos especiales de datos. Empezaremos definiendo qué es una cadena de texto (string) y explicando cómo utilizar algunos procedimientos básicos. Esto nos permitirá trabajar con este tipo de dato, que puede resultar curioso, aunque en ciertos momentos puede resultar un poco confuso para principiantes. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.
Redes neuronales en el trading: Segmentación de datos basada en expresiones de referencia
En el proceso de análisis de la situación del mercado, dividimos este en segmentos individuales, identificando las tendencias clave. Sin embargo, los métodos tradicionales de análisis suelen centrarse en un solo aspecto, lo cual limita nuestra percepción. En este artículo, presentaremos un método que nos permitirá seleccionar varios objetos, ofreciéndonos una comprensión más completa y variada de la situación.
Características del Wizard MQL5 que debe conocer (Parte 43): Aprendizaje por refuerzo con SARSA
SARSA, que es la abreviatura de State-Action-Reward-State-Action (Estado-Acción-Recompensa-Estado-Acción), es otro algoritmo que se puede utilizar al implementar el aprendizaje por refuerzo. Por lo tanto, tal y como vimos con Q-Learning y DQN, analizamos cómo se podría explorar e implementar esto como un modelo independiente, en lugar de solo como un mecanismo de entrenamiento, en los asesores expertos ensamblados por el asistente.
Características del Wizard MQL5 que debe conocer (Parte 45): Aprendizaje por refuerzo con Monte-Carlo
Monte-Carlo es el cuarto algoritmo diferente de aprendizaje por refuerzo que estamos considerando con el objetivo de explorar su implementación en los asesores expertos ensamblados por el asistente. Aunque se basa en el muestreo aleatorio, ofrece numerosas posibilidades de simulación que podemos aprovechar.
Visualización de estrategias en MQL5: distribuimos los resultados de la optimización en gráficos de criterios
En este artículo, escribiremos un ejemplo de visualización del proceso de optimización e implementaremos la visualización de las tres mejores pasadas para cuatro criterios de optimización. Asimismo, ofreceremos la posibilidad de seleccionar una de las tres mejores pasadas para mostrar sus datos en tablas y gráficos.
Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoría
Este artículo se centra en el algoritmo metaheurístico Atmosphere Clouds Model Optimisation (ACMO), que modela el comportamiento de las nubes para resolver problemas de optimización. El algoritmo usa los principios de generación, movimiento y propagación de nubes, adaptándose a las "condiciones meteorológicas" del espacio de soluciones. El artículo revela cómo una simulación meteorológica del algoritmo encuentra soluciones óptimas en un espacio de posibilidades complejo y detalla las etapas del ACMO, incluida la preparación del "cielo", el nacimiento de las nubes, su movimiento y la concentración de la lluvia.
Algoritmo de optimización del billar — Billiards Optimization Algorithm (BOA)
El método BOA, inspirado en el clásico juego del billar, modela el proceso de búsqueda de soluciones óptimas como un juego de bolas que intentan acertar en las troneras que representan los mejores resultados. En este artículo revisaremos los fundamentos del BOA, su modelo matemático y su eficacia para resolver diversos problemas de optimización.
Del básico al intermedio: Struct (II)
En este artículo, vamos entender por qué se crearon estructuras en lenguajes de programación como MQL5, así como también por qué, en algunos momentos, las estructuras son formas ideales de transferir valores entre funciones y procedimientos, mientras que, en otros momentos, pueden no ser la mejor forma de hacerlo.
Del básico al intermedio: Plantilla y Typename (I)
En este artículo, comenzaremos a tratar uno de los conceptos que muchos principiantes evitan. Esto se debe a que las plantillas no son un tema sencillo de entender y utilizar, ya que muchos no comprenden el principio básico detrás de lo que sería una plantilla: la sobrecarga de funciones y procedimientos.
Redes neuronales en el trading: Segmentación guiada
Hoy proponemos al lector familiarizarse con el método de análisis multimodal complejo de interacción y comprensión de características.
Del básico al intermedio: Recursividad
En este artículo, veremos un concepto de programación muy interesante y bastante divertido, aunque debe ser tratado con extremo respeto, ya que un mal uso o un mal entendimiento del mismo convierte programas relativamente simples en algo innecesariamente complicado. Aunque, el buen uso y la perfecta adecuación en situaciones igualmente adecuadas convierten la recursividad en un gran aliado para resolver cuestiones que, de otra forma, serían mucho más trabajosas y demoradas. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe ser considerado como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Análisis de múltiples símbolos con Python y MQL5 (Parte II): Análisis de componentes principales para la optimización de carteras
La gestión del riesgo de las cuentas de trading es un reto para todos los operadores. ¿Cómo podemos desarrollar aplicaciones de trading que aprendan dinámicamente los modos de riesgo alto, medio y bajo para diversos símbolos en MetaTrader 5? Al utilizar el Análisis de Componentes Principales (Principal Components Analysis, PCA), obtenemos un mejor control sobre la variación de la cartera. Demostraré cómo crear aplicaciones que aprendan estos tres modos de riesgo a partir de datos de mercado obtenidos de MetaTrader 5.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 11): EA de señales Heikin Ashi
MQL5 ofrece infinitas oportunidades para desarrollar sistemas de trading automatizados adaptados a sus preferencias. ¿Sabías que incluso puede realizar cálculos matemáticos complejos? En este artículo, presentamos la técnica japonesa Heikin-Ashi como una estrategia de trading automatizada.
Pronosticamos barras Renko con ayuda de IA CatBoost
¿Cómo utilizar las barras Renko junto con la IA? Hoy analizaremos el trading Renko en Fórex con una precisión de previsión del 59,27%. Asimismo, exploraremos las ventajas de las barras Renko para filtrar el ruido del mercado, aprenderemos por qué los indicadores de volumen son más importantes que los patrones de precios y cómo establecer el tamaño óptimo del bloque Renko para el EURUSD. s decir, veremos una guía paso a paso para integrar CatBoost, Python y MetaTrader 5 para crear nuestro propio sistema de previsión Forex Renko. Resulta ideal para tráders que buscan ir más allá del análisis técnico tradicional.
Optimización de Battle Royale — Battle Royale Optimizer (BRO)
El artículo describe un innovador enfoque de optimización que combina la competición espacial de soluciones con el estrechamiento adaptativo del espacio de búsqueda, lo cual convierte al Battle Royale Optimizer en una prometedora herramienta para el análisis financiero.
Del básico al intermedio: Array (III)
En este artículo, veremos cómo trabajar con arrays en MQL5, hasta el punto de transferir información entre funciones y procedimientos mediante arrays. El objetivo es prepararte para lo que se verá y explicará en artículos futuros. No obstante, es extremadamente recomendable que estudies muy bien lo que se mostrará en este artículo.
Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (Final)
En artículos anteriores, revisamos los aspectos teóricos del framework PSformer, que incluye dos importantes innovaciones en la arquitectura del Transformer clásico: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt). En este artículo, continuaremos el trabajo sobre la implementación de los enfoques propuestos mediante MQL5.
Algoritmo de campo eléctrico artificial (AEFA) — Artificial Electric Field Algorithm (AEFA)
Este artículo presenta el algoritmo de campo eléctrico artificial (AEFA) inspirado en la ley de Coulomb de la fuerza electrostática. El algoritmo modela fenómenos eléctricos para resolver problemas de optimización complejos usando partículas cargadas y las interacciones de estas. El AEFA presenta propiedades únicas en el contexto de otros algoritmos relacionados con las leyes de la naturaleza.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 15): Introducción a la teoría de los cuartos (I) - Dibujando la teoría de cuartos
Los puntos de soporte y resistencia son niveles críticos que indican posibles reversiones y continuaciones de la tendencia. Aunque identificar estos niveles puede resultar complicado, una vez que los localices, estarás bien preparado para navegar por el mercado. Si necesitas más ayuda, échale un vistazo a la herramienta Quarters Drawer que aparece en este artículo, te ayudará a identificar los niveles de soporte y resistencia principales y secundarios.
Algoritmo de tiro con arco - Archery Algorithm (AA)
Este artículo detalla un algoritmo de optimización inspirado en el tiro con arco, centrado en el uso del método de la ruleta como mecanismo de selección de zonas prometedoras para las "flechas". Este método nos permite evaluar la calidad de las soluciones y seleccionar las más prometedoras para seguir estudiándolas.
Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)
Le proponemos que conozca un nuevo enfoque de la detección de objetos mediante hiper-redes: una hiper-red de generación de coeficientes de peso para el modelo básico que permite tener en cuenta las peculiaridades del estado actual del mercado. Este enfoque mejora la precisión de las previsiones adaptando el modelo a las distintas condiciones comerciales.
Algoritmo de optimización de neuroboides — Neuroboids Optimization Algorithm (NOA)
Hoy hablaremos de una nueva metaheurística de optimización inspirada en la naturaleza: el NOA (Neuroboids Optimisation Algorithm), que combina principios de inteligencia colectiva y redes neuronales. A diferencia de los métodos clásicos, el algoritmo usa una población de "neuroboides" autodidactas, cada uno con su propia red neuronal que adapta la estrategia de búsqueda en tiempo real. En el artículo se revela la arquitectura del algoritmo, los mecanismos de autoaprendizaje de los agentes y las perspectivas de aplicación de este enfoque híbrido a problemas complejos de optimización.
Optimización por herencia sanguínea — Blood inheritance optimization (BIO)
Les presento mi nuevo algoritmo basado en la población, el BIO (Blood Inheritance Optimization), inspirado en el sistema de herencia del grupo sanguíneo humano. En este algoritmo, cada solución tiene un "grupo sanguíneo" distinto que determina su forma de evolucionar. Al igual que en la naturaleza, el grupo sanguíneo de un niño se hereda según reglas específicas, en el BIO las nuevas soluciones obtienen sus características mediante un sistema de herencia y mutaciones.
Introducción a MQL5 (Parte 13): Guía para principiantes sobre cómo crear indicadores personalizados (II)
Este artículo le guía a través del proceso de creación de un indicador Heikin Ashi personalizado desde cero y muestra cómo integrar indicadores personalizados en un EA. Abarca cálculos de indicadores, lógica de ejecución de operaciones y técnicas de gestión de riesgos para mejorar las estrategias de negociación automatizadas.
Redes neuronales en el trading: Detección de anomalías en el dominio de la frecuencia (Final)
Seguimos trabajando en la aplicación de los planteamientos del framework CATCH, que combina la transformada de Fourier y el mecanismo de parcheo de frecuencias para posibilitar una detección precisa de las anomalías del mercado. En este artículo, finalizaremos nuestra propia visión de los enfoques propuestos y probaremos los nuevos modelos con datos históricos reales.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 5): Reglas de negociación autoadaptativas
Las mejores prácticas, que definen cómo utilizar un indicador de forma segura, no siempre son fáciles de seguir. Las condiciones de mercado tranquilas pueden producir, sorprendentemente, lecturas en el indicador que no califican como señal de negociación, lo que conlleva la pérdida de oportunidades para los operadores algorítmicos. Este artículo propondrá una posible solución a este problema, al analizar cómo construir aplicaciones de negociación capaces de adaptar sus reglas de negociación a los datos de mercado disponibles.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 17): Asesor experto TrendLoom Tool
Como observador de la acción del precio y trader, he notado que cuando una tendencia se confirma en múltiples marcos temporales, suele continuar en esa dirección. Lo que puede variar es la duración de la tendencia, y esto depende del tipo de trader que seas, si mantienes posiciones a largo plazo o te dedicas al scalping. Los plazos que elijas para la confirmación desempeñan un papel crucial. Echa un vistazo a este artículo para conocer un sistema rápido y automatizado que te ayuda a analizar la tendencia general en diferentes marcos temporales con solo hacer clic en un botón o mediante actualizaciones periódicas.
Descifrando las estrategias de trading intradía de ruptura del rango de apertura
Las estrategias de ruptura del rango de apertura (Opening Range Breakout, ORB) se basan en la idea de que el rango de negociación inicial establecido poco después de la apertura del mercado refleja niveles de precios significativos en los que compradores y vendedores acuerdan el valor. Al identificar rupturas por encima o por debajo de un determinado rango, los operadores pueden aprovechar el impulso que suele producirse cuando la dirección del mercado se vuelve más clara. En este artículo, exploraremos tres estrategias ORB adaptadas del Grupo Concretum.
Criterios de tendencia. Final
En este artículo veremos cómo aplicar en la práctica algunos criterios de tendencia, y también intentaremos desarrollar algunos criterios nuevos. La atención se centrará en la eficacia de la aplicación de estos criterios al análisis de datos de mercado y al trading.
Determinamos la sobrecompra y la sobreventa usando la teoría del caos
Hoy determinaremos la sobrecompra y la sobreventa del mercado mediante la teoría del caos; usando la integración de los principios de la teoría del caos, la geometría fractal y las redes neuronales, pronosticaremos los mercados financieros. El presente artículo demostrará la aplicación del exponente de Lyapunov como medida de la aleatoriedad del mercado y la adaptación dinámica de las señales comerciales. La metodología incluye un algoritmo de generación de ruido fractal, activación por tangente hiperbólica y optimización con impulso.
Redefiniendo los indicadores de MQL5 y MetaTrader 5
Un enfoque innovador para recopilar información de indicadores en MQL5 que permite un análisis de datos más flexible y optimizado, al permitir a los desarrolladores pasar entradas personalizadas a los indicadores para realizar cálculos inmediatos. Este enfoque resulta especialmente útil para el trading algorítmico, ya que proporciona un mayor control sobre la información procesada por los indicadores, superando las limitaciones tradicionales.
Pruebas de robustez en asesores expertos
En el desarrollo de una estrategia hay muchos detalles complejos a tener en cuenta, muchos de los cuales no se destacan para los traders principiantes. Como resultado, muchos comerciantes, incluido yo mismo, hemos tenido que aprender estas lecciones a las duras penas. Este artículo se basa en mis observaciones de errores comunes que la mayoría de los traders principiantes encuentran al desarrollar estrategias en MQL5. Ofrecerá una variedad de consejos, trucos y ejemplos para ayudar a identificar la descalificación de un EA y probar la solidez de nuestros propios EA de una manera fácil de implementar. El objetivo es educar a los lectores, ayudándolos a evitar futuras estafas al comprar EA, así como a prevenir errores en el desarrollo de su propia estrategia.
Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)
La comprensión del comportamiento de los agentes es importante en distintos ámbitos, pero la mayoría de los métodos se centran en una única tarea (comprensión, eliminación del ruido, predicción), lo cual reduce su eficacia en escenarios del mundo real. En este artículo, propongo al lector introducir un modelo capaz de adaptarse a diferentes tareas.
Pruebas de robustez en asesores expertos
En el desarrollo de una estrategia hay muchos detalles complejos a tener en cuenta, muchos de los cuales no se destacan para los traders principiantes. Como resultado, muchos comerciantes, incluido yo mismo, hemos tenido que aprender estas lecciones a las duras penas. Este artículo se basa en mis observaciones de errores comunes que la mayoría de los traders principiantes encuentran al desarrollar estrategias en MQL5. Ofrecerá una variedad de consejos, trucos y ejemplos para ayudar a identificar la descalificación de un EA y probar la solidez de nuestros propios EA de una manera fácil de implementar. El objetivo es educar a los lectores, ayudándolos a evitar futuras estafas al comprar EA, así como a prevenir errores en el desarrollo de su propia estrategia.
Algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO)
En este artículo, nos familiarizaremos con el algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO) y discutiremos cómo un algoritmo basado en el comportamiento irracional y aventurero de los participantes en una sociedad anárquica (un sistema anómalo de interacción social libre de poder centralizado y varios tipos de jerarquías) es capaz de explorar el espacio de soluciones y evitar las trampas del óptimo local. El artículo presenta una estructura ASO unificada aplicable tanto a problemas continuos como discretos.
Uso de reglas de asociación en el análisis de datos de Forex
¿Cómo aplicar las reglas predictivas del análisis minorista de supermercados al mercado Forex real? ¿Cómo se relacionan las compras de galletas, leche y pan con las transacciones bursátiles? El artículo analiza un enfoque innovador del trading algorítmico basado en el uso de reglas de asociación.
Explorando técnicas avanzadas de aprendizaje automático en la estrategia Darvas Box Breakout
La estrategia Darvas Box Breakout, creada por Nicolas Darvas, es un enfoque técnico de negociación que detecta posibles señales de compra cuando el precio de una acción sube por encima de un rango establecido, lo que sugiere un fuerte impulso alcista. En este artículo, aplicaremos este concepto estratégico como ejemplo para explorar tres técnicas avanzadas de aprendizaje automático. Entre ellas se incluyen el uso de un modelo de aprendizaje automático para generar señales en lugar de filtrar operaciones, el empleo de señales continuas en lugar de discretas y el uso de modelos entrenados en diferentes marcos temporales para confirmar las operaciones.
Simulación de mercado (Parte 05): Creación de la clase C_Orders (II)
En este artículo, explicaré cómo Chart Trade, junto con el asesor experto, gestionará la solicitud de cierre de todas las posiciones abiertas del usuario. Parece sencillo, pero hay algunos factores que complican la situación y que es necesario saber gestionar.
Del básico al intermedio: Arrays y cadenas (II)
En este artículo, demostraré que, aunque aún estamos en una fase inicial y muy básica, ya podemos implementar alguna aplicación interesante. En este caso, crearemos un generador de contraseñas bastante sencillo. Así podremos aplicar algunos de los conceptos explicados hasta ahora. Además, mostraré cómo se pueden desarrollar soluciones para algunos problemas específicos.