Redes neuronales en el trading: Optimización LSTM para la previsión de series temporales multivariantes (DA-CG-LSTM)
En este artículo presentamos el algoritmo DA-CG-LSTM, que ofrece nuevos enfoques para el análisis y la previsión de series temporales. En él aprenderemos cómo los innovadores mecanismos de atención y la flexibilidad de los modelos mejoran la precisión de las predicciones.
Simulación de mercado (Parte 17): Sockets (X)
Implementar la parte que se ejecutará aquí en MetaTrader 5 no es complicado. Pero hay diversos aspectos a los que hay que prestar atención. Esto es para que tú, querido lector, consigas hacer que el sistema funcione de verdad. Recuerda una cosa: no se ejecutará un único programa. En realidad, estarás ejecutando tres programas a la vez. Es importante que cada uno se implemente y se construya de forma que trabajen y se comuniquen entre sí. Es crucial que cada uno sepa qué está intentando o deseando hacer el otro.
Simulación de mercado (Parte 18): Iniciando SQL (I)
Da igual si vamos a usar uno u otro programa de SQL, ya sea MySQL, SQL Server, SQLite, OpenSQL o cualquier otro. Todos tienen algo en común. Ese algo en común es el lenguaje SQL. Aunque no vayas a usar una WorkBench, podrás manipular o trabajar con una base de datos directamente en MetaEditor o a través de MQL5 para hacer cosas en MetaTrader 5, pero necesitarás tener conocimientos de SQL. Así que aquí aprenderemos, al menos, lo básico.
Simulación de mercado (Parte 19): Iniciando SQL (II)
Como expliqué en el primer artículo sobre SQL, no tiene sentido que pierdas el tiempo programando rutinas para conseguir hacer algo que SQL ya incluye. Sin embargo, si no sabes lo más básico, no lograrás hacer nada con SQL para aprovechar lo que esta herramienta tiene para ofrecernos. Por ello, en este artículo veremos cómo ejecutar tareas fundamentales en bases de datos.
Del básico al intermedio: Estructuras (VII)
En este artículo se mostrará cómo podemos abordar los problemas para estructurar las cosas y crear una solución más sencilla y atractiva. Aunque el contenido está orientado a la didáctica y, por lo tanto, no se trata de un código real, es necesario asimilar muy bien los conceptos y conocimientos que se verán aquí. Así, en el futuro, podrás seguir los códigos que iremos mostrando.
Creación de interfaces gráficas dinámicas MQL5 mediante el escalado de imágenes basado en recursos con interpolación bicúbica en gráficos de trading
En este artículo exploramos las interfaces gráficas dinámicas MQL5, utilizando interpolación bicúbica para un escalado de imágenes de alta calidad en los gráficos de trading. Detallamos opciones de posicionamiento flexibles que permiten el centrado dinámico o el anclaje en esquina con desplazamientos personalizados.
Visión por computadora para el trading (Parte 1): Creamos una funcionalidad básica sencilla
Sistema de previsión de EURUSD mediante visión por computadora y aprendizaje profundo. Descubra cómo las redes neuronales convolucionales pueden reconocer patrones de precios complejos en el mercado de divisas y predecir la evolución de los tipos con una precisión de hasta el 54%. El artículo revela la metodología de creación de un algoritmo que usa tecnologías de inteligencia artificial para analizar visualmente los gráficos en lugar de los indicadores técnicos tradicionales. El autor muestra el proceso de transformación de los datos de precios en "imágenes", su procesamiento por una red neuronal y una visión única de la "conciencia" de la IA a través de mapas de activación y mapas de calor de la atención. El práctico código Python que utiliza la biblioteca MetaTrader 5 permite a los lectores reproducir el sistema y aplicarlo a sus propias transacciones.
Del básico al intermedio: Indicador (V)
En este artículo, veremos cómo podemos lidiar con solicitudes del usuario para cambiar el modo de trazado del gráfico. Esto, para que podamos lograr que un indicador, orientado a usar el modo de trazado gráfico actual, no quede extraño ni diferente de lo que el usuario de MetaTrader 5 esperaría.
Del básico al intermedio: Herencia
Sin duda, se trata de un artículo al que deberás dedicarle bastante tiempo para entender cómo y por qué funcionan las cosas que se muestran aquí. Esto se debe simplemente a que todo lo que se verá y mostrará aquí está orientado originalmente a lo que sería la programación orientada a objetos. Pero, en realidad, se basa en principios de programación estructural.
Simulación de mercado (Parte 20): Iniciando el SQL (III)
Aunque podemos hacer cosas con una base de datos de unas 10 entradas, esto se asimila mucho mejor cuando trabajamos con un archivo que tenga más de 15 mil registros. Es decir, si tú intentaras crear eso manualmente, sería una tarea enorme. Sin embargo, es difícil encontrar una base de datos, incluso con fines didácticos, disponible para descargar. Pero, en realidad, no necesitamos recurrir a eso. Podemos usar MetaTrader 5 para crear una base de datos para nosotros. En este artículo, veremos cómo hacerlo.
Simulación de mercado (Parte 21): Iniciando SQL (IV)
Muchos de ustedes, queridos lectores, pueden tener un nivel de experiencia muy superior al mío en lo que respecta a trabajar con bases de datos y, así, por esta razón, tener una visión diferente de la mía. Pero, como era necesario definir y desarrollar alguna forma de explicar el motivo por el cual las bases de datos se crean como se crean, explicar por qué SQL tiene el formato que tiene y, sobre todo, por qué surgieron las claves primarias y las claves foráneas, fue necesario dejar las cosas un poco abstractas.
Del básico al intermedio: Objetos (I)
En este artículo, empezaremos a ver cómo podremos trabajar con objetos directamente en el gráfico. Esto usando un código construido especialmente para mostrarnos algo. Trabajar con objetos es algo muy interesante y bastante divertido. Como este será el primer contacto, empezaremos con algo muy simple.
Algoritmo de optimización caótica — Chaos optimization algorithm (COA): Continuación
Continuamos el estudio del algoritmo de optimización caótica. La segunda parte del artículo está dedicada a los aspectos prácticos de la implementación del algoritmo, sus pruebas y conclusiones.
Superando las limitaciones del aprendizaje automático (Parte 1): Falta de métricas interoperables
Existe una fuerza poderosa y omnipresente que corrompe silenciosamente los esfuerzos colectivos de nuestra comunidad por desarrollar estrategias comerciales fiables que empleen la IA en cualquiera de sus formas. Este artículo establece que parte de los problemas a los que nos enfrentamos tienen su origen en la adhesión ciega a las «mejores prácticas». Al proporcionar al lector pruebas sencillas basadas en el mercado real, le explicaremos por qué debemos abstenernos de tal conducta y adoptar, en su lugar, las mejores prácticas específicas del ámbito si nuestra comunidad quiere tener alguna posibilidad de recuperar el potencial latente de la IA.