Creación de un asesor experto integrado de MQL5 y Telegram (Parte 7): Análisis de comandos para la automatización de indicadores en los gráficos
En este artículo, exploramos cómo integrar los comandos en Telegram con MQL5 para automatizar la adición de indicadores en los gráficos de trading. Cubrimos el proceso de análisis sintáctico de los comandos del usuario, ejecutándolos en MQL5, y probando el sistema para asegurar un comercio basado en indicadores sin problemas.
Factorización de matriсes: un modelado más práctico
Es muy probable que no te hayas dado cuenta de que el modelado de las matrices era un tanto extraño, ya que no se indicaban filas y columnas, solo columnas. Esto resulta muy raro al leer un código que realiza factorizaciones de matrices. Si esperabas ver las filas y columnas indicadas, podrías haberte sentido bastante confundido al intentar implementar la factorización. Además, esa forma de modelar las matrices no es, ni de cerca, la mejor manera. Esto se debe a que, cuando modelamos matrices de esa forma, nos enfrentamos a ciertas limitaciones que nos obligan a usar otras técnicas o funciones que no serían necesarias si el modelado se realiza de manera más adecuada.
DoEasy. Funciones de servicio (Parte 3): Patrón "Barra exterior"
En este artículo desarrollaremos el patrón Price Action "Barra exterior" en la biblioteca DoEasy y optimizaremos los métodos de acceso a la gestión de los patrones de precios. Además, trabajaremos en la corrección de los fallos y errores detectados durante las pruebas de la biblioteca.
Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión
Imagine un actor malicioso infiltrándose en la sala del administrador comercial y obteniendo acceso a las computadoras y al panel de administración que se utilizan para comunicar información valiosa a millones de comerciantes en todo el mundo. Una intrusión de este tipo podría tener consecuencias desastrosas, como el envío no autorizado de mensajes engañosos o clics aleatorios en botones que desencadenan acciones no deseadas. En esta discusión, exploraremos las medidas de seguridad en MQL5 y las nuevas características de seguridad que hemos implementado en nuestro Panel de administración para protegernos contra estas amenazas. Al mejorar nuestros protocolos de seguridad, nuestro objetivo es proteger nuestros canales de comunicación y mantener la confianza de nuestra comunidad comercial global. Encuentre más información en la discusión de este artículo.
Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)
En el artículo anterior, presentamos el framework adaptativo multiagente MASAAT, que usa un conjunto de agentes para analizar de forma cruzada una serie temporal multimodal a diferentes escalas de representación de datos. Hoy llevaremos a una conclusión lógica el trabajo iniciado para aplicar los planteamientos de este framework usando MQL5.
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)
Hoy querríamos presentarle el FinAgent, un framework de agente multimodal para el comercio financiero diseñado para analizar distintos tipos de datos que reflejan la dinámica del mercado y los patrones comerciales históricos.
Búsqueda dialéctica - Dialectic Search (DA)
Hoy nos familiarizaremos con el Algoritmo Dialéctico (DA), un nuevo método de optimización global inspirado en el concepto filosófico de la dialéctica. El algoritmo explota la singular división de la población en pensadores especulativos y prácticos. Las pruebas demuestran un impresionante rendimiento de hasta el 98% en tareas pequeñas y una eficiencia global del 57,95%. El artículo explica estas métricas y presenta una descripción detallada del algoritmo y resultados experimentales con distintos tipos de características.
Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)
La búsqueda cooperativa artificial (Artificial Cooperative Search, ACS) es un método innovador que utiliza una matriz binaria y múltiples poblaciones dinámicas basadas en relaciones de mutualismo y cooperación para encontrar soluciones óptimas de forma rápida y precisa. El enfoque único de ACS sobre depredadores y presas le permite obtener excelentes resultados en problemas de optimización numérica.
Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR
En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.
Red neural en la práctica: Pseudo inversa (I)
Aquí, comenzaremos a ver cómo podemos implementar, utilizando MQL5 puro, el cálculo de la pseudo inversa. A pesar de que el código que veremos será considerablemente más complicado para los principiantes de lo que realmente me gustaría presentar, aún estoy pensando en cómo explicarlo de manera sencilla. Considera esto una oportunidad para estudiar un código poco común. Así que ve con calma. Sin prisa. Aunque no esté enfocado en ser eficiente o de rápida ejecución, el objetivo es ser lo más didáctico posible.
Análisis de todas las variantes del movimiento de precios en una computadora cuántica IBM
Hoy utilizaremos un computadora cuántica de IBM para descubrir todas las variantes del movimiento de los precios. ¿Le suena a ciencia ficción? ¡Bienvenido al mundo de la informática cuántica para el trading!
Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte I)
El presente artículo presenta un experimento único cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficientemente los mínimos locales cuando la diversidad en la población es baja y alcanzar los máximos globales. Los trabajos en este campo nos permitirán comprender mejor qué algoritmos específicos pueden continuar con éxito la búsqueda a partir de las coordenadas fijadas por el usuario como punto de partida, y qué factores influyen en su éxito en este proceso.
Redes neuronales: así de sencillo (Parte 92): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo
Los autores del método FreDF confirmaron experimentalmente la ventaja de la previsión combinada en los ámbitos de la frecuencia y el tiempo. Sin embargo, el uso del hiperparámetro de peso no es óptimo para series temporales no estacionarias. En este artículo, nos familiarizaremos con el método de combinación adaptativa de previsiones en los ámbitos de la frecuencia y el tiempo.
Del básico al intermedio: Plantilla y Typename (IV)
En este artículo, veremos de forma muy didáctica cómo resolver el problema que se planteó al final del artículo anterior. Allí se intentaba crear una plantilla de tipo para poder crear una plantilla de una unión de datos.
Redes neuronales en el trading: Modelo adaptativo multiagente (Final)
En el artículo anterior, nos familiarizamos con el framework MASA, un framework adaptativo multiagente que combina enfoques de aprendizaje por refuerzo y estrategias adaptativas para ofrecer un equilibrio armonioso entre rentabilidad y riesgo en condiciones de mercado turbulentas. Asimismo, construimos la funcionalidad de los agentes individuales de este framework. En este artículo continuaremos el trabajo empezado, llevándolo a su conclusión lógica.
Algoritmo de trading evolutivo con aprendizaje por refuerzo y extinción de individuos no rentables (ETARE)
Hoy le presentamos un innovador algoritmo comercial que combina algoritmos evolutivos con aprendizaje profundo por refuerzo para la negociación de divisas. El algoritmo utiliza un mecanismo de extinción de individuos ineficaces para optimizar la estrategia comercial.
DoEasy. Elementos de control (Parte 5): Objeto básico WinForms, control "Panel", parámetro AutoSize
En este artículo, crearemos un objeto básico para todos los objetos de la biblioteca WinForms y comenzaremos a implementar la propiedad AutoSize del objeto WinForms "Panel", es decir, el cambio automático del tamaño para que se ajuste a su contenido interno.
Desarrollo de un sistema de repetición (Parte 49): Esto complica las cosas (I)
En este artículo complicaremos un poco las cosas. Utilizando lo que vimos en los artículos anteriores, comenzaremos a liberar el archivo de plantilla para que el usuario pueda utilizar una plantilla personalizada. Sin embargo, haré los cambios poco a poco, ya que también modificaré el indicador con el fin de reducir la carga de MetaTrader 5.
Del básico al intermedio: Variables (I)
Muchos programadores principiantes tienen muchas dificultades para comprender por qué sus códigos no funcionan como esperan. Existen muchos detalles que hacen que un código sea realmente funcional. No se trata simplemente de escribir toda una serie de funciones y operaciones para que un código funcione. ¿Qué tal si aprendemos de la manera correcta cómo se crea un código real en lugar de copiar y pegar fragmentos de código encontrados aquí y allá? El contenido expuesto aquí tiene como objetivo, pura y simplemente, la didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Sistemas neurosimbólicos en trading algorítmico: Combinación de reglas simbólicas y redes neuronales
El artículo relata la experiencia del desarrollo de un sistema comercial híbrido que combine el análisis técnico clásico con las redes neuronales. El autor describe detalladamente la arquitectura del sistema, desde el análisis básico de patrones y la estructura de la red neuronal hasta los mecanismos de toma de decisiones comerciales, compartiendo código real y observaciones de carácter práctico.
Superar los retos de integración de ONNX
ONNX es una gran herramienta para la integración de código complejo de IA entre diferentes plataformas, es una gran herramienta que viene con algunos desafíos que uno debe abordar para obtener el máximo provecho de ella, En este artículo se discuten los problemas comunes que podría enfrentar y cómo mitigarlos.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 04): Haciendo ajustes (II)
Vamos continuar con el desarrollo del sistema y el control. Sin una forma de controlar el servicio, se complica avanzar y mejorar el sistema.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 09): Eventos personalizados
Aquí veremos cómo accionar eventos personalizados y mejorar la cuestión de cómo el indicador informa del estado del servicio de repetición/simulación.
Reimaginando las estrategias clásicas en MQL5 (Parte II): FTSE100 y bonos del Reino Unido (UK Gilts)
En esta serie de artículos, exploramos estrategias de negociación populares e intentamos mejorarlas utilizando IA. En el artículo de hoy, retomamos la estrategia de negociación clásica basada en la relación entre el mercado de valores y el mercado de bonos.
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte V): Modelos profundos de Markov
En esta discusión, aplicaremos una cadena de Markov simple en un indicador RSI, para observar cómo se comporta el precio después de que el indicador pasa por niveles clave. Concluimos que las señales de compra y venta más fuertes en el par NZDJPY se generan cuando el RSI está en el rango 11-20 y 71-80, respectivamente. Demostraremos cómo puedes manipular tus datos para crear estrategias comerciales óptimas que se aprenden directamente de los datos que tienes. Además, demostraremos cómo entrenar una red neuronal profunda para aprender a utilizar la matriz de transición de manera óptima.
Cambiando a MQL5 Algo Forge (Parte 4): Trabajamos con versiones y lanzamientos
Continuaremos el desarrollo del proyecto Simple Candles y Adwizard describiendo los matices del uso del sistema de control de versiones y el repositorio MQL5 Algo Forge.
Indicador personalizado: Trazado de puntos de entradas parciales en cuentas netting
En este artículo, exploraremos una forma interesante y diferente de crear un indicador en MQL5. En lugar de centrarnos en una tendencia o patrón gráfico, el objetivo será gestionar nuestras propias posiciones, incluyendo las entradas y salidas parciales. Utilizaremos intensivamente matrices dinámicas y algunas funciones comerciales (Trade) relacionadas con el historial de transacciones y las posiciones abiertas para indicar en el gráfico dónde se llevaron a cabo estas operaciones.
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)
Hoy finalizaremos la implementación del framework MacroHFT para el comercio de criptomonedas de alta frecuencia, que utiliza el aprendizaje de refuerzo consciente del contexto y el aprendizaje con memoria para adaptarse a las condiciones dinámicas del mercado. Y al final de este artículo, probaremos los enfoques aplicados con datos históricos reales para evaluar su eficacia.
Trading de arbitraje en Forex: Análisis de movimientos de divisas sintéticas y reversión a la media
En este artículo, intentaremos analizar los movimientos de divisas sintéticas utilizando Python + MQL5 y comprender cómo es el arbitraje de divisas real hoy en día. Asimismo, presentaremos cierto código Python listo para analizar divisas sintéticas y más información sobre qué son las divisas sintéticas en Forex.
Desarrollando un cliente MQTT para MetaTrader 5: un enfoque TDD - Final
Este artículo es la última parte de una serie que describe nuestros pasos de desarrollo de un cliente MQL5 nativo para el protocolo MQTT 5.0. Aunque la biblioteca aún no está lista para la producción, en esta parte utilizaremos nuestro cliente para actualizar un símbolo personalizado con ticks (o precios) procedentes de otro broker. Por favor, consulte la parte inferior de este artículo para obtener más información sobre el estado actual de la biblioteca, lo que falta para que sea totalmente compatible con el protocolo MQTT 5.0, una posible hoja de ruta, y cómo seguir y contribuir a su desarrollo.
Características del Wizard MQL5 que debe conocer (Parte 21): Pruebas con datos del calendario económico
De manera predeterminada, los datos del calendario económico no están disponibles para realizar pruebas con asesores expertos dentro del Probador de estrategias. Analizamos cómo las bases de datos podrían ayudar a solucionar esta limitación. Entonces, en este artículo exploramos cómo se pueden usar las bases de datos SQLite para archivar noticias del Calendario Económico, de modo que los Asesores Expertos ensamblados mediante un asistente puedan usarlas para generar señales comerciales.
Características del Wizard MQL5 que debe conocer (Parte 50): Awesome Oscillator
El Awesome Oscillator es otro indicador de Bill Williams que se utiliza para medir el impulso. Puede generar múltiples señales, por lo que las revisamos según un patrón, como en artículos anteriores, aprovechando las clases y el ensamblaje del Asistente MQL5 (Wizard MQL5).
Automatización de estrategias de trading en MQL5 (Parte 6): Dominar la detección de bloques de órdenes para el comercio inteligente con dinero
En este artículo, automatizamos la detección de bloques de órdenes en MQL5 utilizando análisis de acción de precios puro. Definimos bloques de órdenes, implementamos su detección e integramos la ejecución automatizada de operaciones. Por último, realizamos una prueba retrospectiva de la estrategia para evaluar su rendimiento.
Vectores y valores propios: Análisis exploratorio de datos en MetaTrader 5
En este artículo exploramos diferentes formas en que los vectores propios y los valores propios pueden aplicarse en el análisis exploratorio de datos para revelar relaciones únicas en los datos.
Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt
Este artículo le presentaremos una implementación del algoritmo Levenberg-Marquardt para el entrenamiento de redes neuronales de propagación directa. Asimismo, realizaremos un análisis comparativo del rendimiento usando algoritmos de la biblioteca scikit-learn Python. También discutiremos preliminarmente los métodos de aprendizaje más sencillos como el descenso de gradiente, el descenso de gradiente con impulso y el descenso de gradiente estocástico.
Del básico al intermedio: Variables (II)
En este artículo vamos a ver cómo trabajar con variables del tipo estática. Este tema suele confundir a muchos programadores, tanto principiantes como aquellos con algo de experiencia. Esto se debe a que existen algunos cuidados y trucos que deben observarse al usar este mecanismo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la enseñanza didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos presentados.
Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos
Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.
Características del Wizard MQL5 que debe conocer (Parte 19): Inferencia bayesiana
La inferencia bayesiana es la adopción del teorema de Bayes para actualizar la hipótesis de probabilidad a medida que se dispone de nueva información. Esto intuitivamente se inclina hacia la adaptación en el análisis de series de tiempo, por lo que observamos cómo podríamos usarlo para crear clases personalizadas no solo para la señal sino también para la gestión de dinero y los trailing stops.
Del básico al intermedio: Definiciones (I)
En este artículo, haremos cosas que para muchos parecerán extrañas y totalmente fuera de contexto, pero que, si se aplican bien, harán que tu aprendizaje sea mucho más divertido y emocionante, ya que podemos construir cosas bastante interesantes basándonos en lo que se muestra aquí, lo que permite una mejor asimilación de la sintaxis del lenguaje MQL5. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Características del Wizard MQL5 que debe conocer (Parte 48): Bill Williams Alligator
El indicador Alligator, creado por Bill Williams, es un indicador versátil para identificar tendencias que proporciona señales claras y que a menudo se combina con otros indicadores. Las clases y el ensamblador del asistente MQL5 nos permiten probar una variedad de señales basadas en patrones, por lo que también tenemos en cuenta este indicador.