Del básico al intermedio: Eventos (II)
En este artículo veremos que no siempre es necesario implementar las cosas de una u otra manera. Existen formas alternativas de hacer las cosas. Comprender los conceptos explicados en artículos anteriores es primordial para entender adecuadamente el contenido de este artículo. El contenido expuesto aquí tiene como objetivo único y exclusivo la didáctica. En ningún caso debe considerarse una aplicación final, en la que el objetivo no sea el estudio de los conceptos aquí mostrados.
Aprendizaje automático y Data Science (Parte 31): Uso de los modelos de inteligencia artificial CatBoost
Los modelos de IA CatBoost han ganado popularidad masiva recientemente entre las comunidades de aprendizaje automático debido a su precisión predictiva, eficiencia y robustez ante conjuntos de datos dispersos y difíciles. En este artículo, vamos a discutir en detalle cómo implementar este tipo de modelos en un intento de vencer al mercado de divisas.
Análisis de todas las variantes del movimiento de precios en una computadora cuántica IBM
Hoy utilizaremos un computadora cuántica de IBM para descubrir todas las variantes del movimiento de los precios. ¿Le suena a ciencia ficción? ¡Bienvenido al mundo de la informática cuántica para el trading!
DoEasy. Elementos de control (Parte 5): Objeto básico WinForms, control "Panel", parámetro AutoSize
En este artículo, crearemos un objeto básico para todos los objetos de la biblioteca WinForms y comenzaremos a implementar la propiedad AutoSize del objeto WinForms "Panel", es decir, el cambio automático del tamaño para que se ajuste a su contenido interno.
Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)
Deep-Q-Network es un algoritmo de aprendizaje de refuerzo que involucra redes neuronales para proyectar el próximo valor Q y la acción ideal durante el proceso de entrenamiento de un módulo de aprendizaje automático. Ya hemos considerado un algoritmo de aprendizaje de refuerzo alternativo, Q-Learning. Por lo tanto, este artículo presenta otro ejemplo de cómo un MLP entrenado con aprendizaje de refuerzo se puede utilizar dentro de una clase de señal personalizada.
Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)
En el artículo anterior, presentamos el framework adaptativo multiagente MASAAT, que usa un conjunto de agentes para analizar de forma cruzada una serie temporal multimodal a diferentes escalas de representación de datos. Hoy llevaremos a una conclusión lógica el trabajo iniciado para aplicar los planteamientos de este framework usando MQL5.
Del básico al intermedio: Variables (II)
En este artículo vamos a ver cómo trabajar con variables del tipo estática. Este tema suele confundir a muchos programadores, tanto principiantes como aquellos con algo de experiencia. Esto se debe a que existen algunos cuidados y trucos que deben observarse al usar este mecanismo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la enseñanza didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos presentados.
Redes neuronales en el trading: Superpoint Transformer (SPFormer)
En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.
Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión
Imagine un actor malicioso infiltrándose en la sala del administrador comercial y obteniendo acceso a las computadoras y al panel de administración que se utilizan para comunicar información valiosa a millones de comerciantes en todo el mundo. Una intrusión de este tipo podría tener consecuencias desastrosas, como el envío no autorizado de mensajes engañosos o clics aleatorios en botones que desencadenan acciones no deseadas. En esta discusión, exploraremos las medidas de seguridad en MQL5 y las nuevas características de seguridad que hemos implementado en nuestro Panel de administración para protegernos contra estas amenazas. Al mejorar nuestros protocolos de seguridad, nuestro objetivo es proteger nuestros canales de comunicación y mantener la confianza de nuestra comunidad comercial global. Encuentre más información en la discusión de este artículo.
Indicador personalizado: Trazado de puntos de entradas parciales en cuentas netting
En este artículo, exploraremos una forma interesante y diferente de crear un indicador en MQL5. En lugar de centrarnos en una tendencia o patrón gráfico, el objetivo será gestionar nuestras propias posiciones, incluyendo las entradas y salidas parciales. Utilizaremos intensivamente matrices dinámicas y algunas funciones comerciales (Trade) relacionadas con el historial de transacciones y las posiciones abiertas para indicar en el gráfico dónde se llevaron a cabo estas operaciones.
Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos
Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.
Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte II)
Hoy continuaremos un experimento cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficazmente los mínimos locales cuando la diversidad de la población es baja y alcanzar los máximos globales. Resultados del estudio.
Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)
En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.
Del básico al intermedio: Definiciones (I)
En este artículo, haremos cosas que para muchos parecerán extrañas y totalmente fuera de contexto, pero que, si se aplican bien, harán que tu aprendizaje sea mucho más divertido y emocionante, ya que podemos construir cosas bastante interesantes basándonos en lo que se muestra aquí, lo que permite una mejor asimilación de la sintaxis del lenguaje MQL5. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Redes neuronales: así de sencillo (Parte 92): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo
Los autores del método FreDF confirmaron experimentalmente la ventaja de la previsión combinada en los ámbitos de la frecuencia y el tiempo. Sin embargo, el uso del hiperparámetro de peso no es óptimo para series temporales no estacionarias. En este artículo, nos familiarizaremos con el método de combinación adaptativa de previsiones en los ámbitos de la frecuencia y el tiempo.
Algoritmo de Irrigación Artificial — Artificial Showering Algorithm (ASHA)
Este artículo presenta el Algoritmo de Irrigación Artificial (ASHA), un nuevo método metaheurístico desarrollado para resolver problemas generales de optimización. Basado en la modelización de los procesos de flujo y almacenamiento del agua, este algoritmo construye el concepto de un campo ideal en el que cada unidad de recurso (agua) es invocada para encontrar una solución óptima. Hoy descubriremos cómo el ASHA adapta los principios de flujo y acumulación para asignar eficazmente los recursos en el espacio de búsqueda, y también veremos su aplicación y los resultados de sus pruebas.
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)
Hoy finalizaremos la implementación del framework MacroHFT para el comercio de criptomonedas de alta frecuencia, que utiliza el aprendizaje de refuerzo consciente del contexto y el aprendizaje con memoria para adaptarse a las condiciones dinámicas del mercado. Y al final de este artículo, probaremos los enfoques aplicados con datos históricos reales para evaluar su eficacia.
Desarrollo de un sistema de repetición (Parte 52): Esto complica las cosas (IV)
En este artículo vamos a cambiar el indicador de mouse para poder interactuar con el indicador de control, ya que esta se está realizando de forma errática.
El método de agrupamiento para el manejo de datos: Implementación del algoritmo iterativo multicapa en MQL5
En este artículo describimos la implementación del algoritmo iterativo multicapa del método de agrupamiento para el manejo de datos en MQL5.
Búsqueda con restricciones — Tabu Search (TS).
En este artículo se analiza el algoritmo de búsqueda tabú, uno de los primeros y más conocidos métodos de la metaheurística. Hoy mostraremos con detalle cómo funciona el algoritmo, empezando por la selección de una solución inicial y la exploración de las opciones vecinas, centrándonos en el uso de la lista tabú. El artículo abarcará los aspectos clave del algoritmo y sus características.
Asistente de Connexus (Parte 5): Métodos HTTP y códigos de estado
En este artículo, comprenderemos los métodos HTTP y los códigos de estado, dos piezas muy importantes de la comunicación entre el cliente y el servidor en la web. Comprender lo que hace cada método le brinda el control para realizar solicitudes con mayor precisión, informando al servidor qué acción desea realizar y haciéndolo más eficiente.
Características del Wizard MQL5 que debe conocer (Parte 50): Awesome Oscillator
El Awesome Oscillator es otro indicador de Bill Williams que se utiliza para medir el impulso. Puede generar múltiples señales, por lo que las revisamos según un patrón, como en artículos anteriores, aprovechando las clases y el ensamblaje del Asistente MQL5 (Wizard MQL5).
Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt
Este artículo le presentaremos una implementación del algoritmo Levenberg-Marquardt para el entrenamiento de redes neuronales de propagación directa. Asimismo, realizaremos un análisis comparativo del rendimiento usando algoritmos de la biblioteca scikit-learn Python. También discutiremos preliminarmente los métodos de aprendizaje más sencillos como el descenso de gradiente, el descenso de gradiente con impulso y el descenso de gradiente estocástico.
Características del Wizard MQL5 que debe conocer (Parte 48): Bill Williams Alligator
El indicador Alligator, creado por Bill Williams, es un indicador versátil para identificar tendencias que proporciona señales claras y que a menudo se combina con otros indicadores. Las clases y el ensamblador del asistente MQL5 nos permiten probar una variedad de señales basadas en patrones, por lo que también tenemos en cuenta este indicador.
Perspectivas bursátiles a través del volumen: Confirmación de tendencias
La técnica mejorada de confirmación de tendencias combina la acción del precio, el análisis del volumen y el aprendizaje automático para identificar movimientos genuinos del mercado. Requiere tanto rupturas de precios como aumentos de volumen (un 50% por encima de la media) para la validación de las operaciones, al tiempo que utiliza una red neuronal LSTM para obtener una confirmación adicional. El sistema emplea el dimensionamiento de posiciones basado en ATR y la gestión dinámica del riesgo, lo que lo hace adaptable a diversas condiciones del mercado y permite filtrar las señales falsas.
Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Práctica
En este artículo, seguiremos profundizando en la aplicación del algoritmo ACMO (Atmospheric Cloud Model Optimisation). En particular, discutiremos dos aspectos clave: el movimiento de las nubes hacia regiones de bajas presiones y la modelización del proceso de lluvia, incluida la inicialización de las gotas y su distribución entre las nubes. También analizaremos otras técnicas que desempeñan un papel importante a la hora de gestionar el estado de las nubes y garantizar su interacción con el entorno.
Gestión de capital en el trading y programa de contabilidad doméstica del tráder con base de datos
¿Cómo gestiona el capital un tráder? ¿Cómo debe llevar el tráder y el inversor los registros de gastos, ingresos, activos y pasivos? No solo voy a presentarle un programa de contabilidad, sino una herramienta que puede convertirse en su navegante financiero de confianza en el turbulento mar del trading.
Desarrollo de un sistema de repetición (Parte 43): Proyecto Chart Trade (II)
Gran parte de las personas que quieren, o desean aprender a programar, no tienen en realidad idea de lo que están haciendo. Lo que hacen es intentar crear las cosas de una determinada manera. Sin embargo, cuando programamos no estamos realmente intentando crear una solución. Si intentas hacerlo de esta manera, generarás más problemas que soluciones. Aquí haremos algo un poco más avanzado, y por consecuencia diferente.
Kit de herramientas de negociación MQL5 (Parte 4): Desarrollo de una biblioteca EX5 para la gestión del historial
Aprenda a recuperar, procesar, clasificar, ordenar, analizar y gestionar posiciones cerradas, órdenes e historiales de operaciones utilizando MQL5 mediante la creación de una amplia biblioteca EX5 de gestión de historiales con un enfoque detallado paso a paso.
Simulación de mercado (Parte 02): Orden cruzada (II)
A diferencia de lo que se vio en el artículo anterior, aquí vamos a hacer el control de selección en el Asesor Experto. Aunque esta no es aún una solución definitiva, nos servirá por ahora. Así que acompaña el artículo para entender cómo implementar una de las soluciones posibles.
Simulación de mercado (Parte 04): Creación de la clase C_Orders (I)
En este artículo comenzaremos a construir la clase C_Orders para poder enviar órdenes al servidor de negociación. Lo haremos poco a poco, ya que el objetivo es explicar detalladamente cómo se realizará esto a través del sistema de mensajería.
Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas
La negociación con varias divisas no está disponible por defecto cuando se crea un asesor experto mediante el asistente. Examinamos dos posibles trucos que los operadores pueden utilizar para poner a prueba sus ideas con más de un símbolo a la vez.
Algoritmo de Big Bang y Big Crunch
En el presente artículo, le presentamos el método Big Bang - Big Crunch, que consta de dos fases clave: la creación cíclica de puntos aleatorios y su compresión hasta una solución óptima. Este enfoque combina exploración y refinamiento, lo cual permite encontrar soluciones progresivamente mejores y descubre nuevas oportunidades en el campo de la optimización.
Características del Wizard MQL5 que debe conocer (Parte 19): Inferencia bayesiana
La inferencia bayesiana es la adopción del teorema de Bayes para actualizar la hipótesis de probabilidad a medida que se dispone de nueva información. Esto intuitivamente se inclina hacia la adaptación en el análisis de series de tiempo, por lo que observamos cómo podríamos usarlo para crear clases personalizadas no solo para la señal sino también para la gestión de dinero y los trailing stops.
Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios
En este artículo nos familiarizaremos con el método Mask-Attention-Free Transformer (MAFT) y su aplicación en el ámbito del trading. A diferencia de los Transformers tradicionales, que requieren el enmascaramiento de los datos durante el procesamiento de la secuencia, el MAFT optimiza el proceso de atención eliminando la necesidad de enmascaramiento, lo que mejora significativamente la eficiencia computacional.
Integración de MQL5 con paquetes de procesamiento de datos (Parte 4): Gestión de Big Data
Esta parte explora técnicas avanzadas para integrar MQL5 con potentes herramientas de procesamiento de datos y se centra en el manejo eficiente de grandes volúmenes de datos para mejorar el análisis comercial y la toma de decisiones.
Reimaginando las estrategias clásicas (Parte VIII): Los mercados de divisas y metales preciosos en el USDCAD
En esta serie de artículos, revisamos estrategias de negociación bien conocidas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy comprobaremos si existe una relación fiable entre los metales preciosos y las divisas.
Operar con noticias de manera sencilla (Parte 5): Ejecución de operaciones (II)
Este artículo ampliará la clase de gestión de operaciones para incluir órdenes de compra y venta con límite (buy-stop y sell-stop) con el fin de operar con eventos de noticias e implementar una restricción de vencimiento en estas órdenes para evitar cualquier operación nocturna. Se incorporará una función de deslizamiento (slippage) al experto para intentar prevenir o minimizar el posible deslizamiento que puede producirse al utilizar órdenes stop en las operaciones, especialmente durante eventos noticiosos.
Operar con el Calendario Económico MQL5 (Parte 5): Mejorar el panel de control con controles adaptables y botones de filtro
En este artículo, creamos botones para filtros de pares de divisas, niveles de importancia, filtros de tiempo y una opción de cancelación para mejorar el control del panel. Estos botones están programados para responder dinámicamente a las acciones del usuario, lo que permite una interacción fluida. También automatizamos su comportamiento para reflejar los cambios en tiempo real en el panel de control. Esto mejora la funcionalidad general, la movilidad y la capacidad de respuesta del panel.
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea
Le proponemos familiarizarse con un framework que combina la transformada de wavelet y el modelo multitarea Self-Attention con el objetivo de mejorar la capacidad de respuesta y la precisión de las previsiones en condiciones de mercado volátiles. La transformada de wavelet descompone los rendimientos de los activos en frecuencias altas y bajas, captando cuidadosamente las tendencias del mercado a largo plazo y las fluctuaciones a corto plazo.