
Desarrollo de un sistema de repetición (Parte 49): Esto complica las cosas (I)
En este artículo complicaremos un poco las cosas. Utilizando lo que vimos en los artículos anteriores, comenzaremos a liberar el archivo de plantilla para que el usuario pueda utilizar una plantilla personalizada. Sin embargo, haré los cambios poco a poco, ya que también modificaré el indicador con el fin de reducir la carga de MetaTrader 5.

Reimaginando las estrategias clásicas: El petróleo
En este artículo, revisamos una estrategia clásica de negociación de crudo con el objetivo de mejorarla aprovechando algoritmos de aprendizaje automático supervisado. Construiremos un modelo de mínimos cuadrados para predecir los futuros precios del crudo Brent basándonos en el diferencial entre los precios del crudo Brent y del crudo WTI. Nuestro objetivo es identificar un indicador adelantado de futuros cambios en los precios del Brent.

Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5
En este artículo, analizamos el concepto de deformación dinámica del tiempo como medio para identificar patrones predictivos en series de tiempo financieras. Veremos cómo funciona y presentaremos su implementación en MQL5.

Optimización del búfalo africano - African Buffalo Optimization (ABO)
El artículo se centra en el algoritmo de optimización del búfalo africano (ABO), un enfoque metaheurístico desarrollado en 2015 y basado en el comportamiento único de estos animales. El artículo detalla los pasos de implementación del algoritmo y su eficacia a la hora de encontrar soluciones a problemas complejos, lo cual lo convierte en una valiosa herramienta en el campo de la optimización.

Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte I)
El presente artículo presenta un experimento único cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficientemente los mínimos locales cuando la diversidad en la población es baja y alcanzar los máximos globales. Los trabajos en este campo nos permitirán comprender mejor qué algoritmos específicos pueden continuar con éxito la búsqueda a partir de las coordenadas fijadas por el usuario como punto de partida, y qué factores influyen en su éxito en este proceso.

Características del Wizard MQL5 que debe conocer (Parte 21): Pruebas con datos del calendario económico
De manera predeterminada, los datos del calendario económico no están disponibles para realizar pruebas con asesores expertos dentro del Probador de estrategias. Analizamos cómo las bases de datos podrían ayudar a solucionar esta limitación. Entonces, en este artículo exploramos cómo se pueden usar las bases de datos SQLite para archivar noticias del Calendario Económico, de modo que los Asesores Expertos ensamblados mediante un asistente puedan usarlas para generar señales comerciales.

Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR
En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.

MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales
La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 04): Haciendo ajustes (II)
Vamos continuar con el desarrollo del sistema y el control. Sin una forma de controlar el servicio, se complica avanzar y mejorar el sistema.

Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones
En este artículo, nos centramos en transformar nuestro panel de control MQL5 estático en una herramienta interactiva habilitando la capacidad de respuesta de los botones. Exploramos cómo automatizar la funcionalidad de los componentes de la interfaz gráfica de usuario (GUI), asegurándonos de que reaccionen adecuadamente a los clics de los usuarios. Al final del artículo, establecemos una interfaz dinámica que mejora la participación del usuario y la experiencia comercial.

Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos
Seguimos estudiando los algoritmos para extraer características de una nube de puntos. Y en este artículo, nos familiarizaremos con los mecanismos para mejorar la eficacia del método PointNet.

Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos
La calidad de las predicciones de los estados futuros desempeña un papel importante en el método Goal-Conditioned Predictive Coding, del que hablamos en el artículo anterior. En este artículo quiero presentarte un algoritmo que puede mejorar significativamente la calidad de la predicción en entornos estocásticos, como los mercados financieros.

Clase básica de algoritmos de población como base para una optimización eficaz
El presente material supone un intento único de investigación para combinar una variedad de algoritmos de población en una sola clase y simplificar la aplicación de técnicas de optimización. Este enfoque no solo descubre oportunidades para el desarrollo de nuevos algoritmos, incluidas variantes híbridas, sino que también crea un banco de pruebas básico y versátil. Este banco se convertirá así en una herramienta clave para seleccionar el algoritmo óptimo según un problema específico.

Desarrollo de un sistema de repetición (Parte 52): Esto complica las cosas (IV)
En este artículo vamos a cambiar el indicador de mouse para poder interactuar con el indicador de control, ya que esta se está realizando de forma errática.

Análisis del impacto del clima en las divisas de los países agrícolas usando Python
¿Cómo se relacionan el clima y el mercado de divisas? La teoría económica clásica no ha reconocido durante mucho tiempo la influencia de estos factores en el comportamiento del mercado. Pero ahora las cosas han cambiado. Hoy intentaremos encontrar conexiones entre el estado del tiempo y la posición de las divisas agrarias en el mercado.

Métodos de optimización de la biblioteca ALGLIB (Parte II)
En este artículo seguiremos analizando los métodos restantes de optimización de la biblioteca ALGLIB, prestando especial atención a su comprobación con funciones multivariantes complejas. Esto nos permitirá no solo evaluar el rendimiento de cada algoritmo, sino también identificar sus puntos fuertes y débiles en diferentes condiciones.

DoEasy. Elementos de control (Parte 5): Objeto básico WinForms, control "Panel", parámetro AutoSize
En este artículo, crearemos un objeto básico para todos los objetos de la biblioteca WinForms y comenzaremos a implementar la propiedad AutoSize del objeto WinForms "Panel", es decir, el cambio automático del tamaño para que se ajuste a su contenido interno.

Factorización de matriсes: un modelado más práctico
Es muy probable que no te hayas dado cuenta de que el modelado de las matrices era un tanto extraño, ya que no se indicaban filas y columnas, solo columnas. Esto resulta muy raro al leer un código que realiza factorizaciones de matrices. Si esperabas ver las filas y columnas indicadas, podrías haberte sentido bastante confundido al intentar implementar la factorización. Además, esa forma de modelar las matrices no es, ni de cerca, la mejor manera. Esto se debe a que, cuando modelamos matrices de esa forma, nos enfrentamos a ciertas limitaciones que nos obligan a usar otras técnicas o funciones que no serían necesarias si el modelado se realiza de manera más adecuada.

Desarrollamos un asesor experto multidivisa (Parte 15): Preparamos el asesor experto para el trading real
Al acercarnos gradualmente un asesor experto listo, debemos prestar atención a las cuestiones que son secundarias en la etapa de prueba de la estrategia comercial, pero que se vuelven importantes al pasar a la negociación real.

Desarrollo de un sistema de repetición (Parte 73): Una comunicación inusual (II)
En este artículo, veremos cómo transferir información en tiempo real entre el indicador y el servicio, y comprenderemos por qué pueden surgir problemas al modificar el timeframe y cómo resolverlos correctamente. Como bono, tendrás acceso a la última versión de la aplicación de repetición/simulador. El contenido es exclusivamente didáctico y no debe utilizarse con otros fines.

Algoritmo de optimización de reacciones químicas (CRO) (Parte I): Química de procesos en la optimización
En la primera parte de este artículo, nos sumergiremos en el mundo de las reacciones químicas y descubriremos un nuevo enfoque de la optimización. La optimización de reacciones químicas (Chemical Reaction Optimization, CRO) utiliza principios derivados de las leyes de la termodinámica para lograr resultados eficientes. Desvelaremos los secretos de la descomposición, la síntesis y otros procesos químicos que se convirtieron en la base de este innovador método.

Algoritmo de optimización de reacciones químicas (CRO) (Parte II): Ensamblaje y resultados
En la segunda parte, reuniremos los operadores químicos en un único algoritmo y presentaremos un análisis detallado de sus resultados. Descubramos cómo el método de optimización de reacciones químicas (CRO) aborda la solución de problemas complejos en funciones de prueba.

Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)
En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.

Red neural en la práctica: Pseudo inversa (I)
Aquí, comenzaremos a ver cómo podemos implementar, utilizando MQL5 puro, el cálculo de la pseudo inversa. A pesar de que el código que veremos será considerablemente más complicado para los principiantes de lo que realmente me gustaría presentar, aún estoy pensando en cómo explicarlo de manera sencilla. Considera esto una oportunidad para estudiar un código poco común. Así que ve con calma. Sin prisa. Aunque no esté enfocado en ser eficiente o de rápida ejecución, el objetivo es ser lo más didáctico posible.

Reimaginando las estrategias clásicas en MQL5 (Parte IX): Análisis de múltiples marcos temporales (II)
En la discusión de hoy, examinamos la estrategia de análisis de múltiples marcos temporales para aprender en qué marco temporal nuestro modelo de IA funciona mejor. Nuestro análisis nos lleva a concluir que los marcos temporales mensuales y horarios producen modelos con tasas de error relativamente bajas en el par EURUSD. Utilizamos esto para nuestro beneficio y creamos un algoritmo comercial que hace predicciones de IA en el marco de tiempo mensual y ejecuta sus operaciones en el marco de tiempo horario.

Redes neuronales en el trading: Agente con memoria multinivel (Final)
Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.

Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)
La búsqueda cooperativa artificial (Artificial Cooperative Search, ACS) es un método innovador que utiliza una matriz binaria y múltiples poblaciones dinámicas basadas en relaciones de mutualismo y cooperación para encontrar soluciones óptimas de forma rápida y precisa. El enfoque único de ACS sobre depredadores y presas le permite obtener excelentes resultados en problemas de optimización numérica.

Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 1): Proyector de gráficos
Este proyecto tiene como objetivo aprovechar el lenguaje MQL5 para desarrollar un conjunto integral de herramientas de análisis para MetaTrader 5. Estas herramientas, que van desde scripts e indicadores hasta modelos de IA y asesores expertos, automatizarán el proceso de análisis del mercado. En ocasiones, este desarrollo producirá herramientas capaces de realizar análisis avanzados sin intervención humana y pronosticar resultados para las plataformas adecuadas. Ninguna oportunidad jamás se perderá. Únase a mí mientras exploramos el proceso de creación de un conjunto sólido de herramientas personalizadas para el análisis de mercado. Comenzaremos desarrollando un programa MQL5 simple que he llamado "Proyector de gráficos" (Chart Projector).

Del básico al intermedio: Variables (I)
Muchos programadores principiantes tienen muchas dificultades para comprender por qué sus códigos no funcionan como esperan. Existen muchos detalles que hacen que un código sea realmente funcional. No se trata simplemente de escribir toda una serie de funciones y operaciones para que un código funcione. ¿Qué tal si aprendemos de la manera correcta cómo se crea un código real en lugar de copiar y pegar fragmentos de código encontrados aquí y allá? El contenido expuesto aquí tiene como objetivo, pura y simplemente, la didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos
Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.

Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)
En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.

Reimaginando las estrategias clásicas en MQL5 (Parte II): FTSE100 y bonos del Reino Unido (UK Gilts)
En esta serie de artículos, exploramos estrategias de negociación populares e intentamos mejorarlas utilizando IA. En el artículo de hoy, retomamos la estrategia de negociación clásica basada en la relación entre el mercado de valores y el mercado de bonos.

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 1): Proyector de gráficos
Este proyecto tiene como objetivo aprovechar el lenguaje MQL5 para desarrollar un conjunto integral de herramientas de análisis para MetaTrader 5. Estas herramientas, que van desde scripts e indicadores hasta modelos de IA y asesores expertos, automatizarán el proceso de análisis del mercado. En ocasiones, este desarrollo producirá herramientas capaces de realizar análisis avanzados sin intervención humana y pronosticar resultados para las plataformas adecuadas. Ninguna oportunidad jamás se perderá. Únase a mí mientras exploramos el proceso de creación de un conjunto sólido de herramientas personalizadas para el análisis de mercado. Comenzaremos desarrollando un programa MQL5 simple que he llamado "Proyector de gráficos" (Chart Projector).

Desarrollo de un sistema de repetición (Parte 43): Proyecto Chart Trade (II)
Gran parte de las personas que quieren, o desean aprender a programar, no tienen en realidad idea de lo que están haciendo. Lo que hacen es intentar crear las cosas de una determinada manera. Sin embargo, cuando programamos no estamos realmente intentando crear una solución. Si intentas hacerlo de esta manera, generarás más problemas que soluciones. Aquí haremos algo un poco más avanzado, y por consecuencia diferente.

Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)
El framework LSEAttention ofrece formas de mejorar la arquitectura del Transformer, y se ha diseñado específicamente para la previsión a largo plazo de series temporales multidimensionales. Los enfoques propuestos por los autores del método resuelven los problemas de colapso de entropía e inestabilidad de aprendizaje característicos del Transformer vainilla.

Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas
La negociación con varias divisas no está disponible por defecto cuando se crea un asesor experto mediante el asistente. Examinamos dos posibles trucos que los operadores pueden utilizar para poner a prueba sus ideas con más de un símbolo a la vez.

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte V): Modelos profundos de Markov
En esta discusión, aplicaremos una cadena de Markov simple en un indicador RSI, para observar cómo se comporta el precio después de que el indicador pasa por niveles clave. Concluimos que las señales de compra y venta más fuertes en el par NZDJPY se generan cuando el RSI está en el rango 11-20 y 71-80, respectivamente. Demostraremos cómo puedes manipular tus datos para crear estrategias comerciales óptimas que se aprenden directamente de los datos que tienes. Además, demostraremos cómo entrenar una red neuronal profunda para aprender a utilizar la matriz de transición de manera óptima.

Redes neuronales en el trading: Segmentación guiada (Final)
Continuamos el trabajo iniciado en el artículo anterior sobre la construcción del marco RefMask3D usando herramientas MQL5. Este marco está diseñado para explorar de forma exhaustiva la interacción multimodal y analizar las características de una nube de puntos, seguida de la identificación del objeto de destino partiendo de la descripción proporcionada en lenguaje natural.