Redes neuronales: así de sencillo (Parte 90): Interpolación frecuencial de series temporales (FITS)
Al estudiar el método FEDformer, abrimos la puerta al dominio frecuencial de la representación de series temporales. En este nuevo artículo continuaremos con el tema iniciado, y analizaremos un método que permite no solo el análisis, sino también la predicción de estados posteriores en el ámbito privado.
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (Final)
Seguimos trabajando en la implementación de los algoritmos para el agente multimodal de comercio financiero (FinAgent), diseñado para analizar los datos multimodales de la dinámica de mercado y los patrones comerciales históricos.
Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)
Vamos a crear algo más interesante. El código que mostré antes quedará completamente obsoleto. No quiero arruinar la sorpresa. Sigue el artículo para entender mejor. Desde el inicio de esta secuencia sobre cómo desarrollar un sistema de repetición/simulación, he dicho que la idea es usar la plataforma MetaTrader 5 de manera idéntica, tanto en el sistema que estamos desarrollando como en el mercado real. Es importante que esto se haga de manera adecuada. No querrás entrenar y aprender a luchar usando determinadas herramientas y en el momento de la pelea tener que usar otras.
Capacidades de SQLite en MQL5: Ejemplo de panel interactivo con estadísticas comerciales por símbolos y números mágicos
En este artículo, analizaremos la creación de un indicador que mostrará en un panel interactivo las estadísticas comerciales según la cuenta, y también según los símbolos y estrategias comerciales. Asimismo, escribiremos un código basándonos en los ejemplos de la Documentación y el artículo sobre el trabajo con bases de datos.
Redes neuronales en el trading: Modelo hiperbólico de difusión latente (Final)
El uso de procesos de difusión anisotrópica para codificar los datos de origen en un espacio latente hiperbólico, como se propone en el framework HypDIff, ayuda a preservar las características topológicas de la situación actual del mercado y mejora la calidad de su análisis. En el artículo anterior, empezamos a aplicar los enfoques propuestos usando herramientas MQL5. Hoy continuaremos el trabajo iniciado, llevándolo a su conclusión lógica.
Implementación en MQL5 de la prueba de Augmented Dickey-Fuller (ADF)
En este artículo demostramos la implementación de la prueba Dickey-Fuller aumentada (ADF, por sus siglas en inglés), y la aplicamos para realizar pruebas de cointegración utilizando el método Engle-Granger.
Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.
Desarrollamos un asesor experto multidivisa (Parte 17): preparación adicional para el trading real
Ahora nuestro EA utiliza una base de datos para recuperar las cadenas de inicialización de instancias individuales de estrategias comerciales. Sin embargo, la base de datos es bastante voluminosa y contiene mucha información innecesaria para el funcionamiento real del asesor experto. Vamos a intentar que el EA funcione sin conexión obligatoria a la base de datos.
Kit de herramientas de negociación MQL5 (Parte 3): Desarrollo de una biblioteca EX5 para la gestión de órdenes pendientes
Aprenda a desarrollar e implementar una biblioteca EX5 integral de órdenes pendientes en su código o proyectos MQL5. Este artículo le mostrará cómo crear una extensa biblioteca EX5 de gestión de órdenes pendientes y lo guiará en el proceso de importarla e implementarla mediante la creación de un panel de negociación o una interfaz gráfica de usuario (GUI). El panel de órdenes del asesor experto permitirá a los usuarios abrir, monitorear y eliminar órdenes pendientes asociadas con un número mágico específico directamente desde la interfaz gráfica en la ventana del gráfico.
Operar con noticias de manera sencilla (Parte 6): Ejecución de operaciones (III)
En este artículo se implementará la filtración de noticias para eventos de noticias individuales basándose en sus identificadores. Además, se mejorarán las consultas SQL anteriores para proporcionar información adicional o reducir el tiempo de ejecución de la consulta. Además, se hará funcional el código creado en los artículos anteriores.
Automatización de estrategias de trading en MQL5 (Parte 3): Sistema RSI de recuperación de zona para la gestión dinámica de operaciones
En este artículo, creamos un sistema (un EA) de recuperación de zona RSI en MQL5, utilizando señales RSI para lanzar operaciones y una estrategia de recuperación para gestionar las pérdidas. Implementamos una clase «ZoneRecovery» para automatizar las entradas de operaciones, la lógica de recuperación y la gestión de posiciones. El artículo concluye con información sobre backtesting para optimizar el rendimiento y mejorar la eficacia del EA.
Teoría de Categorías en MQL5 (Parte 6): Productos fibrados monomórficos y coproductos fibrados epimórficos
La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
DoEasy. Elementos de control (Parte 32): "ScrollBar" horizontal, desplazamiento con la rueda del ratón
En este artículo completaremos el desarrollo de la funcionalidad del objeto de barra de desplazamiento horizontal. Asimismo, haremos posible el desplazamiento del contenido del contenedor moviendo el control deslizante de la barra de desplazamiento y girando la rueda del ratón. También introduciremos ciertas adiciones a la biblioteca considerando la nueva política de ejecución de órdenes aparecida en el terminal y los nuevos códigos de error de ejecución en MQL5.
Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)
En este artículo, daremos vida a la clase C_Mouse. Está diseñada para permitir programar al más alto nivel posible. Sin embargo, hablar de programar a niveles altos o bajos no está relacionado con incluir palabrotas o jerga en el código. Todo lo contrario. Cuando mencionamos programación de alto o bajo nivel, nos referimos a lo fácil o difícil que es para otro programador entender el código.
DoEasy. Elementos de control (Parte 21): Elemento de control SplitContainer. Separador de paneles
En este artículo, crearemos una clase de objeto auxiliar de separador de paneles para el control SplitContainer.
Creación de una estrategia de retorno a la media basada en el aprendizaje automático
Este artículo propone otro enfoque original para crear sistemas comerciales basados en el aprendizaje automático, usando la clusterización y el etiquetado de transacciones para estrategias de retorno a la media.
Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)
En este trabajo, proponemos introducir un algoritmo que use operadores de mejora de políticas de forma cerrada para optimizar las acciones offline del Agente.
Algoritmos de optimización de la población: Algoritmo híbrido de optimización de forrajeo bacteriano con algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
Este artículo presenta un nuevo enfoque para resolver problemas de optimización combinando las ideas de los algoritmos de optimización de forrajeo bacteriano (BFO) y las técnicas utilizadas en el algoritmo genético (GA) en un algoritmo híbrido BFO-GA. Dicha técnica utiliza enjambres bacterianos para buscar una solución óptima de manera global y operadores genéticos para refinar los óptimos locales. A diferencia del BFO original, ahora las bacterias pueden mutar y heredar genes.
Desarrollamos un asesor experto multidivisa (Parte 10): Creación de objetos a partir de una cadena
El plan de desarrollo del EA comprende varias etapas con resultados intermedios almacenados en una base de datos. Solo se pueden recuperar desde allí como cadenas o números, no como objetos. Así que necesitaremos una forma de recrear en el EA los objetos deseados a partir de las cadenas leídas de la base de datos.
Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático
La normalización por lotes es el preprocesamiento de datos antes de introducirlos en un algoritmo de aprendizaje automático, como una red neuronal. Esto siempre se hace teniendo en cuenta el tipo de activación que utilizará el algoritmo. Por lo tanto, exploramos los diferentes enfoques que se pueden adoptar para aprovechar los beneficios de esto, con la ayuda de un Asesor Experto ensamblado por un asistente.
Creación de una estrategia de retorno a la media basada en el aprendizaje automático
Este artículo propone otro enfoque original para crear sistemas comerciales basados en el aprendizaje automático, usando la clusterización y el etiquetado de transacciones para estrategias de retorno a la media.
Aprendizaje automático y Data Science (Parte 18): La batalla por dominar la complejidad del mercado: SVD truncado frente a NMF
La descomposición del valor singular truncado (SVD, Singular Value Decomposition) y la factorización de matrices no negativas (NMF, Non-Negative Matrix Factorization) son técnicas de reducción de la dimensionalidad. Ambos desempeñan un papel importante en la elaboración de estrategias de negociación basadas en datos. Descubra el arte de reducir la dimensionalidad, desentrañar ideas y optimizar los análisis cuantitativos para obtener un enfoque informado que le permita navegar por las complejidades de los mercados financieros.
Obtenga una ventaja sobre cualquier mercado (Parte IV): Índices CBOE de volatilidad del euro y el oro
Analizaremos datos alternativos curados por el 'Chicago Board Of Options Exchange' (CBOE) para mejorar la precisión de nuestras redes neuronales profundas al pronosticar el símbolo XAUEUR (oro).
Creación de una estrategia de retorno a la media basada en el aprendizaje automático
Este artículo propone otro enfoque original para crear sistemas comerciales basados en el aprendizaje automático, usando la clusterización y el etiquetado de transacciones para estrategias de retorno a la media.
Modelos ocultos de Markov para la predicción de la volatilidad siguiendo tendencias
Los modelos ocultos de Markov (Hidden Markov Models, HMM) son potentes herramientas estadísticas que identifican los estados subyacentes del mercado mediante el análisis de los movimientos observables de los precios. En el ámbito bursátil, los HMM mejoran la predicción de la volatilidad y proporcionan información para las estrategias de seguimiento de tendencias mediante la modelización y la anticipación de los cambios en los regímenes de mercado. En este artículo, presentaremos el procedimiento completo para desarrollar una estrategia de seguimiento de tendencias que utiliza HMM para predecir la volatilidad como filtro.
Introducción a MQL5 (Parte 12): Guía para principiantes sobre cómo crear indicadores personalizados
Aprenda a crear un indicador personalizado en MQL5. Con un enfoque basado en proyectos. Esta guía para principiantes cubre los buffers de indicadores, las propiedades y la visualización de tendencias, permitiéndole aprender paso a paso.
Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales
El agrupamiento basado en densidad para aplicaciones con ruido (DBSCAN) es una forma no supervisada de agrupar datos que apenas requiere parámetros de entrada, salvo solo 2, lo cual, en comparación con otros enfoques como k-means, es una ventaja. Profundizamos en cómo esto podría ser constructivo para probar y eventualmente operar con Asesores Expertos montados por Wizard MQL5.
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte I): Clusterización
En este artículo analizaremos un innovador método de optimización denominado BSO (Brain Storm Optimization), inspirado en el fenómeno natural de la tormenta de ideas. También discutiremos un nuevo enfoque de resolución de tareas de optimización multimodales que utiliza el método BSO y nos permite encontrar múltiples soluciones óptimas sin tener que determinar de antemano el número de subpoblaciones. En este artículo, también analizaremos los métodos de clusterización K-Means y K-Means++.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 3): Asesor Experto Analytics Master
Pasar de un simple script de trading a un Asesor Experto (EA) totalmente funcional puede mejorar significativamente su experiencia de trading. Imagina tener un sistema que supervisa automáticamente tus gráficos, realiza cálculos esenciales en segundo plano y proporciona actualizaciones periódicas cada dos horas. Este EA estaría equipado para analizar métricas clave que son cruciales para tomar decisiones comerciales informadas, lo que garantiza que usted tenga acceso a la información más actualizada para ajustar sus estrategias de manera eficaz.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 7): Signal Pulse EA
Aproveche todo el potencial del análisis multitemporal con «Signal Pulse», un asesor experto MQL5 que integra las bandas de Bollinger y el oscilador estocástico para ofrecer señales de trading precisas y de alta probabilidad. Descubra cómo implementar esta estrategia y visualizar eficazmente las oportunidades de compra y venta utilizando flechas personalizadas. Ideal para operadores que buscan mejorar su capacidad de juicio mediante análisis automatizados en múltiples marcos temporales.
Trading de arbitraje en Forex: Un bot market-maker simple de sintéticos para comenzar
Hoy vamos a desmontar mi primer robot de arbitraje: un proveedor de liquidez (si lo podemos llamar así) en activos sintéticos. Hoy en día este bot está funcionando con éxito como un módulo en un gran sistema de aprendizaje automático, pero he puesto en marcha un viejo robot de arbitraje de divisas de la nube, así que le propongo echarle un vistazo, y pensar en lo que podemos hacer con él hoy.
Teoría de categorías (Parte 9): Acciones de monoides
El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. En este artículo examinaremos las acciones de los monoides como un medio de transformación de los monoides descritos en el artículo anterior para aumentar sus aplicaciones.
Red neuronal en la práctica: Función de recta
En este artículo, pasaremos rápidamente por algunos métodos para obtener la función que podría representar nuestros datos en la base. No me adentraré en detalles sobre cómo usar estadísticas y estudios de probabilidad para interpretar los resultados. Dejo esto como tarea para aquellos que realmente deseen profundizar en la parte matemática del asunto. De todas formas, estudiar estos temas será crucial para que puedas comprender todo lo que involucra los estudios de redes neuronales. Aquí seré bastante suave con el tema.
Creación de un modelo de restricción de tendencia de velas (Parte 6): Integración todo en uno
Un reto importante es la gestión de varias ventanas de gráficos del mismo par que ejecutan el mismo programa con diferentes funciones. Vamos a discutir cómo consolidar varias integraciones en un programa principal. Además, compartiremos ideas sobre la configuración del programa para imprimir en un diario y comentar el éxito de la emisión de señales en la interfaz de gráficos. Encontrará más información en este artículo a medida que avancemos en la serie de artículos.
Desarrollamos un asesor experto para controlar los puntos de entrada en las operaciones swing
A medida que el año se acerca a su fin, los tráders a largo plazo suelen hacer balance del año, analizando la historia, el comportamiento y las tendencias del mercado para evaluar el potencial de los movimientos futuros. En este artículo, analizaremos el desarrollo de un asesor experto para el seguimiento de operaciones a largo plazo utilizando MQL5. El objetivo será hacer frente a problemas como la pérdida de oportunidades comerciales debido al trading manual y a la falta de sistemas de supervisión automatizados. Como ejemplo de definición eficaz de una estrategia para nuestra solución y también para desarrollar la misma, utilizaremos uno de los pares comerciales más destacados.
Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias
CatBoost es un potente modelo de aprendizaje automático basado en árboles que se especializa en la toma de decisiones basada en características estacionarias. Otros modelos basados en árboles, como XGBoost y Random Forest, comparten características similares en cuanto a su solidez, capacidad para manejar patrones complejos e interpretabilidad. Estos modelos tienen una amplia gama de usos, desde el análisis de características hasta la gestión de riesgos. En este artículo, vamos a explicar el procedimiento para utilizar un modelo CatBoost entrenado como filtro para una estrategia clásica de seguimiento de tendencias con cruce de medias móviles.
Redes neuronales en el trading: Transformador jerárquico de doble torre (Final)
Seguimos construyendo el modelo del transformador jerárquico Hidformer de dos torres, diseñado para analizar y predecir series temporales multivariantes complejas. En este artículo llevaremos el trabajo iniciado anteriormente a su conclusión lógica probando el modelo con datos históricos reales.
Simulación de mercado (Parte 11): Sockets (V)
Vamos a empezar a implementar la comunicación entre Excel y MetaTrader 5, pero antes es necesario entender algunas cosas importantes. Así no te quedarás rascándote la cabeza tratando de comprender por qué las cosas funcionan o no. Y antes de que frunzas el ceño ante la integración entre Python y Excel, veamos cómo podemos usar xlwings para controlar, en cierta medida, MetaTrader 5 a través de Excel. Lo que voy a mostrar aquí se centrará principalmente en la didáctica. No pienses que solo podemos hacer lo que mostraré.
Redes neuronales: así de sencillo (Parte 55): Control interno contrastado (CIC)
El aprendizaje contrastivo (Contrastive learning) supone un método de aprendizaje de representación no supervisado. Su objetivo consiste en entrenar un modelo para que destaque las similitudes y diferencias entre los conjuntos de datos. En este artículo, hablaremos del uso de enfoques de aprendizaje contrastivo para investigar las distintas habilidades del Actor.
Aplicación de la selección de características localizadas en Python y MQL5
Este artículo explora un algoritmo de selección de características introducido en el artículo 'Local Feature Selection for Data Classification' de Narges Armanfard et al. El algoritmo se implementa en Python para construir modelos clasificadores binarios que pueden integrarse con aplicaciones de MetaTrader 5 para la inferencia.