
DoEasy. Controles (Parte 23): mejorando los objetos WinForms TabControl y SplitContainer
En este artículo, añadiremos los nuevos eventos de ratón respecto a los límites de los espacios de trabajo WinForms, y también corregiremos algunos errores en los controles TabControl y SplitContainer.

DoEasy. Funciones de servicio (Parte 1): Patrones de precios
En este artículo empezaremos a desarrollar métodos de búsqueda de patrones de precios usando datos de series temporales. Un patrón tiene una serie de parámetros comunes a todas las clases y tipos de patrones. Todos los datos de este tipo se centrarán en la clase de objeto de patrón abstracto básico. Hoy crearemos una clase de patrón abstracto y una clase de patrón Pin-bar.

Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS)
Este artículo analiza el algoritmo AOS (Atomic Orbital Search), que usa conceptos de modelos orbitales atómicos para modelar la búsqueda de soluciones. El algoritmo se basa en distribuciones de probabilidad y en la dinámica de las interacciones en el átomo. El artículo analiza con detalle los aspectos matemáticos del AOS, incluida la actualización de las posiciones de las soluciones candidatas y los mecanismos de absorción y liberación de energía. El AOS descubre nuevos horizontes para la aplicación de los principios cuánticos a los problemas computacionales al ofrecer un enfoque innovador de la optimización.

Marcado de datos en el análisis de series temporales (Parte 4): Descomposición de la interpretabilidad usando el marcado de datos
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.

Herramientas econométricas para la previsión de la volatilidad: el modelo GARCH
El presente artículo describe las propiedades de un modelo de heteroscedasticidad condicional no lineal (GARCH). Sobre esta base se construye el indicador iGARCH para predecir la volatilidad un paso por delante. Para estimar los parámetros del modelo se usará la biblioteca de análisis numérico ALGLIB.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 17): Ticks y más ticks (I)
Aquí vamos a empezar a ver cómo implementar algo realmente interesante y curioso. Pero al mismo tiempo, es extremadamente complicado debido a algunas cuestiones que muchos confunden. Y lo peor que puede pasar es que algunos operadores que se autodenominan profesionales no tienen idea de la importancia de estos conceptos en el mercado de capitales. Sí, a pesar de que el enfoque aquí es la programación, comprender algunas cuestiones relacionadas con las operaciones en los mercados es de suma importancia para lo que vamos a empezar a implementar aquí.

Desarrollando un EA comercial desde cero (Parte 14): Volume at Price (II)
Hoy añadiremos varios recursos a nuestro EA. Este artículo les resultará bastante interesante y puede orientarlos hacia nuevas ideas y métodos para presentar la información y, al mismo tiempo, corregir pequeños fallos en sus proyectos.

Trabajamos con modelos ONNX en formato float16 y float8
Los formatos de datos usados para representar modelos de aprendizaje automático desempeñan un papel clave en su eficacia. En los últimos años, se han desarrollado varios tipos de datos nuevos específicamente para trabajar con modelos de aprendizaje profundo. En este artículo nos centraremos en dos nuevos formatos de datos que se han generalizado en los modelos modernos.

Uso del algoritmo de aprendizaje automático PatchTST para predecir la acción del precio durante las próximas 24 horas
En este artículo, aplicamos un algoritmo de red neuronal relativamente complejo lanzado en 2023 llamado PatchTST para predecir la acción del precio durante las próximas 24 horas. Utilizaremos el repositorio oficial, haremos ligeras modificaciones, entrenaremos un modelo para EURUSD y lo aplicaremos para realizar predicciones futuras tanto en Python como en MQL5.

DoEasy. Elementos de control (Parte 31): Desplazamiento por el contenido del control "ScrollBar"
En este artículo, crearemos la funcionalidad necesaria para desplazar el contenido del contenedor usando los botones de la barra de desplazamiento horizontal.

Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte II)
Hoy discutiremos sobre la integración funcional de Telegram para las notificaciones de indicadores de MetaTrader 5 utilizando el poder de MQL5, en asociación con Python y la API Telegram Bot. Lo explicaremos todo con detalle para que nadie se pierda ningún punto. Al finalizar este proyecto, habrá adquirido conocimientos valiosos para aplicar en sus proyectos.

Teoría de categorías en MQL5 (Parte 4): Intervalos, experimentos y composiciones
La teoría de categorías es una rama de las matemáticas diversa y en expansión, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo describir algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.

Teoría de categorías en MQL5 (Parte 12): Orden
El artículo forma parte de una serie sobre la implementación de grafos utilizando la teoría de categorías en MQL5 y está dedicado a la relación de orden (Order Theory). Hoy analizaremos dos tipos básicos de orden y exploraremos cómo los conceptos de relación de orden pueden respaldar conjuntos monoides en las decisiones comerciales.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)
Desarrollar un simulador puede resultar mucho más interesante de lo que parece. Así que demos algunos pasos más en esta dirección, porque las cosas están empezando a ponerse interesantes.

Redes neuronales: así de sencillo (Parte 42): Procrastinación del modelo, causas y métodos de solución
La procrastinación del modelo en el contexto del aprendizaje por refuerzo puede deberse a varias razones, y para solucionar este problema deberemos tomar las medidas pertinentes. El artículo analiza algunas de las posibles causas de la procrastinación del modelo y los métodos para superarlas.

Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)
El artículo habla de un método de optimización basado en los principios del sistema inmune del organismo -Micro Artificial immune system, (Micro-AIS)-, una modificación del AIS. El Micro-AIS usa un modelo más simple del sistema inmunitario y operaciones sencillas de procesamiento de la información inmunitaria. El artículo también analizará las ventajas e inconvenientes del Micro-AIS en comparación con el AIS convencional.

Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex
Este artículo le presentará los secretos de la alquimia algorítmica, introduciéndole con precisión las particularidades de los paisajes financieros. Asimismo, aprenderá cómo los bosques aleatorios transforman los datos en predicciones y le servirán de ayuda al navegar por las complejidades de los mercados financieros. Intentaremos identificar el papel de los bosques aleatorios en los datos financieros y comprobaremos si pueden ayudar a aumentar los beneficios.

Comercio algorítmico con MetaTrader 5 y R para principiantes
Embárquese en una apasionante exploración en la que el análisis financiero se encuentra con el trading algorítmico mientras desentrañamos el arte de unir a la perfección R y MetaTrader 5. Este artículo es su guía para unir los reinos de la finura analítica en R con las formidables capacidades comerciales de MetaTrader 5.

Operar con noticias de manera sencilla (Parte 3): Realizando operaciones
En este artículo, nuestro experto en negociación de noticias comenzará a abrir operaciones basándose en el calendario económico almacenado en nuestra base de datos. Además, mejoraremos los gráficos del experto para mostrar información más relevante sobre los próximos acontecimientos del calendario económico.

Criterios de tendencia en el trading
Las tendencias son una parte importante de muchas estrategias comerciales. En este artículo analizaremos algunas de las herramientas utilizadas para identificar tendencias y sus características. Comprender e interpretar correctamente las tendencias puede mejorar sustancialmente los resultados comerciales y minimizar los riesgos.

Desarrollamos un asesor experto multidivisa (Parte 13): Automatización de la segunda fase: selección en grupos
Ya hemos puesto en marcha la primera fase del proceso de optimización automatizada. Para distintos símbolos y marcos temporales, realizamos la optimización utilizando varios criterios y almacenamos información sobre los resultados de cada pasada en la base de datos. Ahora vamos a seleccionar los mejores grupos de conjuntos de parámetros de entre los encontrados en la primera etapa.

Simulación de mercado (Parte 03): Una cuestión de rendimiento
Muchas veces, estamos obligados a dar un paso atrás para luego avanzar. En este artículo, mostraré todos los cambios necesarios para que el rendimiento de los indicadores Mouse y Chart Trade no se viera comprometido. Como bono, presentaré otros cambios que ocurrieron en otros archivos de encabezado, los cuales serán muy utilizados en el futuro.

Teoría de categorías en MQL5 (Parte 22): Una mirada distinta a las medias móviles
En el presente artículo intentaremos simplificar los conceptos tratados en esta serie centrándonos en solo un indicador, el más común y probablemente el más fácil de entender: la media móvil. También veremos el significado y las posibles aplicaciones de las transformaciones naturales verticales.

Simulador rápido de estrategias comerciales en Python usando Numba
Este artículo implementaremos un simulador rápido de estrategias para modelos de aprendizaje automático utilizando Numba. En cuanto a su velocidad, superará en un factor de 50 a un simulador de estrategias puramente basado en Python. El autor recomienda usar esta biblioteca para acelerar los cálculos matemáticos, y especialmente cuando se utilizan ciclos.

Del básico al intermedio: Operadores
En este artículo, exploraremos los operadores básicos. Aunque es un tema fácil de comprender, existen pequeños detalles que marcan una gran diferencia a la hora de incorporar expresiones matemáticas en formato de código. Sin comprender adecuadamente estos detalles, muchos programadores con poca o ninguna experiencia terminan abandonando su intento de crear sus propias soluciones.

Gráficos del índice del dólar y del índice del euro — ejemplo de servicio en MetaTrader 5
Como ejemplo de programa de servicio, consideraremos la creación y actualización de gráficos del índice del dólar (USDX) y del índice del euro (EURX). Al lanzar el servicio, comprobaremos la disponibilidad del instrumento sintético requerido, lo crearemos en caso de que no exista y lo colocaremos en la ventana de Observación del Mercado. A continuación, se creará la historia del instrumento sintético, de minutos y ticks, y se abrirá el gráfico del instrumento creado.

Gestión de Riesgo (Parte 4): Finalizando los Métodos Clave de la Clase
Este artículo constituye la cuarta entrega de nuestra serie sobre gestión de riesgo en MQL5, donde continuamos explorando técnicas avanzadas para proteger y optimizar nuestras estrategias de trading. Luego de haber sentado bases importantes en artículos anteriores, ahora nos centraremos en finalizar todos aquellos métodos pendientes que dejamos en la tercera parte, incluyendo funciones para verificar si se han alcanzado ciertos límites de pérdidas o ganancias. Además, presentaremos nuevos eventos clave que permiten una gestión más precisa y ágil.

Redes neuronales: así de sencillo (Parte 51): Actor-crítico conductual (BAC)
Los dos últimos artículos han considerado el algoritmo SAC (Soft Actor-Critic), que incorpora la regularización de la entropía en la función de la recompensa. Este enfoque equilibra la exploración del entorno y la explotación del modelo, pero solo es aplicable a modelos estocásticos. El presente material analizará un enfoque alternativo aplicable tanto a modelos estocásticos como deterministas.

Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)
En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.

Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)
Vamos a continuar el desarrollo del sistema de órdenes, pero verás que haremos una reutilización masiva de cosas ya vistas en otros artículos. Aun así, tendremos una pequeña recompensa en este artículo. Desarrollaremos, en primer lugar, un sistema que pueda ser operado junto al servidor de negociación real, ya sea usando una cuenta demo o una cuenta real. Haremos uso masivo y extensivo de la plataforma MetaTrader 5 para proporcionarnos todo el soporte que necesitaremos en este inicio de viaje.

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 4)
Este artículo supone la cuarta parte de la serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT. En esta parte, veremos las propiedades de MQTT v5.0, su semántica, cómo leemos algunas de ellas, y ofreceremos un breve ejemplo de cómo se pueden usar las propiedades para ampliar el protocolo.

Trading algorítmico basado en patrones de reversión 3D
Hoy descubriremos al lector el nuevo mundo del trading automatizado con barras 3D. ¿Qué aspecto tiene un robot comercial basado en barras de precios multidimensionales, y pueden los clústeres "amarillos" de barras tridimensionales predecir los cambios de tendencia? ¿Cómo es el trading en múltiples dimensiones?

Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales
Las estrategias que se basan en múltiples marcos de tiempo no se pueden probar en los Asesores Expertos ensamblados por defecto debido a la arquitectura de código MQL5 utilizada en las clases de ensamblaje. Exploramos una posible solución a esta limitación para las estrategias que buscan utilizar múltiples marcos temporales en un estudio de caso con la media móvil cuadrática.

DoEasy. Elementos de control (Parte 2): Continuamos trabajando con la clase CPanel
En este artículo, eliminaremos algunos errores que surgen al trabajar con los elementos gráficos y continuaremos desarrollando el control CPanel. Estos métodos servirán para establecer por defecto los parámetros de fuente usados para todos los objetos de texto en el panel, que a su vez podrán ser colocados en él en el futuro.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas
Hemos logrado desarrollar una forma de ejecutar la repetición de mercado de manera bastante realista y aceptable. Ahora, vamos a continuar con nuestro proyecto y agregar datos para mejorar el comportamiento de la repetición.

Cuantificación en el aprendizaje automático (Parte 2): Preprocesamiento de datos, selección de tablas, entrenamiento del modelo CatBoost
En este artículo, hablaremos de la aplicación práctica de la cuantificación en la construcción de modelos arbóreos. Asimismo, analizaremos los métodos de selección de tablas cuantificadas y el preprocesamiento de datos. El material se presentará sin fórmulas matemáticas complejas, en un lenguaje accesible.

Características del Wizard MQL5 que debe conocer (Parte 07): Dendrogramas
La clasificación de datos para el análisis y la predicción es un área muy diversa del aprendizaje automático con un gran número de enfoques y métodos. En este artículo analizaremos uno de estos enfoques, a saber, la Clasificación Jerárquica Aglomerativa (Agglomerative Hierarchical Classification).

Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte III)
Esta parte de la serie de artículos está dedicada a la integración de WhatsApp con MetaTrader 5 para las notificaciones. Hemos incluido un diagrama de flujo para simplificar la comprensión y analizaremos la importancia de las medidas de seguridad en la integración. El objetivo principal de los indicadores es simplificar el análisis mediante la automatización, y deben incluir métodos de notificación para alertar a los usuarios cuando se cumplan determinadas condiciones. Descubra más en este artículo.

Características del Wizard MQL5 que debe conocer (Parte 22): Redes generativas adversativas (RGAs) condicionales
Las redes generativas antagónicas son un emparejamiento de redes neuronales que se entrenan entre sí para obtener resultados más precisos. Adoptamos el tipo condicional de estas redes mientras buscamos una posible aplicación en la previsión de series de tiempo financieras dentro de una clase de señales expertas.

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte IV): Apilamiento de modelos
Hoy demostraremos cómo se pueden crear aplicaciones comerciales impulsadas por IA capaces de aprender de sus propios errores. Demostraremos una técnica conocida como apilamiento, mediante la cual usamos 2 modelos para hacer 1 predicción. El primer modelo suele ser un alumno más débil, y el segundo modelo suele ser un modelo más potente que aprende los residuos de nuestro alumno más débil. Nuestro objetivo es crear un conjunto de modelos, para lograr, con suerte, una mayor precisión.