Artículos sobre programación en el lenguaje MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Introducción a MQL5 (Parte 9): Comprensión y uso de objetos en MQL5

Introducción a MQL5 (Parte 9): Comprensión y uso de objetos en MQL5

Aprenda a crear y personalizar objetos gráficos en MQL5 utilizando datos actuales e históricos. Esta guía basada en proyectos le ayuda a visualizar operaciones y aplicar conceptos MQL5 de manera práctica, lo que facilita la creación de herramientas adaptadas a sus necesidades comerciales.
preview
Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

El presente artículo describe modelos de aprendizaje jerárquico que ofrecen un enfoque eficiente para resolver problemas complejos de aprendizaje automático. Los modelos jerárquicos constan de varios niveles; cada uno de ellos es responsable de diferentes aspectos del problema.
preview
Comercio algorítmico con MetaTrader 5 y R para principiantes

Comercio algorítmico con MetaTrader 5 y R para principiantes

Embárquese en una apasionante exploración en la que el análisis financiero se encuentra con el trading algorítmico mientras desentrañamos el arte de unir a la perfección R y MetaTrader 5. Este artículo es su guía para unir los reinos de la finura analítica en R con las formidables capacidades comerciales de MetaTrader 5.
preview
Desarrollamos un asesor experto multidivisa (Parte 6): Automatizamos la selección de un grupo de instancias

Desarrollamos un asesor experto multidivisa (Parte 6): Automatizamos la selección de un grupo de instancias

Tras optimizar una estrategia comercial, obtendremos conjuntos de parámetros en base a los cuales podremos crear varias instancias (ejemplares) de estrategias comerciales combinadas en un asesor experto. Antes lo hacíamos manualmente, pero ahora trataremos de automatizar el proceso
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Continuamos nuestro análisis del método del Transformador Vectorial Jerárquico. En este artículo finalizaremos la construcción del modelo. También lo entrenaremos y probaremos con datos históricos reales.
preview
Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

En este artículo, refactorizamos el código existente utilizado para enviar mensajes y capturas de pantalla de MQL5 a Telegram organizándolo en funciones modulares y reutilizables. Esto agilizará el proceso, permitiendo una ejecución más eficiente y una gestión del código más sencilla en múltiples instancias.
preview
Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python

Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.
preview
Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)

Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)

En los 2 últimos artículos nos hemos centrado en el método Decision Transformer, que modela las secuencias de acciones en el contexto de un modelo autorregresivo de recompensas deseadas. En el artículo de hoy, analizaremos otro algoritmo para optimizar este método.
preview
Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

En este artículo, realizamos un estudio del algoritmo Boids, que se basa en ejemplos únicos del comportamiento de enjambre o bandada de animales. El algoritmo Boids, a su vez, ha servido de base para la creación de toda una clase de algoritmos agrupados bajo el nombre de "inteligencia de enjambre".
preview
Fibonacci en Forex (Parte I): Comprobamos la relación tiempo-precio

Fibonacci en Forex (Parte I): Comprobamos la relación tiempo-precio

¿Cómo se desplaza el mercado por una relación basada en los números de Fibonacci? Esta secuencia, en la que cada número sucesivo es igual a la suma de los dos anteriores (1, 1, 2, 3, 3, 5, 8, 13, 21...), no solo describe el crecimiento de la población de conejos. Hoy vamos a analizar la hipótesis de Pitágoras de que todo en el mundo obedece a ciertas relaciones de números....
preview
El modelo de movimiento de precios y sus principales disposiciones (Parte 2):  Ecuación de evolución del campo de probabilidad del precio y aparición del paseo aleatorio observado

El modelo de movimiento de precios y sus principales disposiciones (Parte 2): Ecuación de evolución del campo de probabilidad del precio y aparición del paseo aleatorio observado

En el presente artículo, hemos derivado una ecuación para la evolución del campo probabilístico de precio, hemos encontrado un criterio para acercarnos al salto de precio, y también hemos revelado la esencia de los valores de precio en los gráficos de cotización y el mecanismo para la aparición de un paseo aleatorio de dichos valores .
preview
Red neuronal en la práctica: La primera neurona

Red neuronal en la práctica: La primera neurona

En este artículo, comenzaremos a crear algo que muchos se sorprenden al ver funcionando: una simple y modesta neurona que lograremos programar con muy poco código en MQL5. La neurona funcionó perfectamente en las pruebas que realicé. Bueno, retrocedamos un poco en esta misma serie sobre redes neuronales, para que puedas entender de qué estoy hablando.
preview
Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Los modelos que creamos son cada vez más grandes y complejos. Esto aumenta los costes no sólo de su formación, sino también de su funcionamiento. Sin embargo, el tiempo necesario para tomar una decisión suele ser crítico. A este respecto, consideremos los métodos para optimizar el rendimiento del modelo sin pérdida de calidad.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 18):  Ticks y más ticks (II)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 18): Ticks y más ticks (II)

En este caso, es extremadamente claro que las métricas están muy lejos del tiempo ideal para la creación de barras de 1 minuto. Entonces, lo primero que realmente corregiremos es precisamente esto. Corregir la cuestión de la temporización no es algo complicado. Por más increíble que parezca, en realidad es bastante simple de hacer. Sin embargo, no realicé la corrección en el artículo anterior porque allí el objetivo era explicar cómo llevar los datos de los ticks que se estaban utilizando para generar las barras de 1 minuto en el gráfico a la ventana de observación del mercado.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 24): FOREX (V)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 24): FOREX (V)

Hoy eliminaremos la restricción que impedía la ejecución de simulaciones basadas en el trazado de LAST e introduciremos un nuevo punto de entrada específico para este tipo de simulación. Ahora, vean que todo el mecanismo operativo se fundamentará en los principios del mercado de divisas. La principal distinción en esta rutina reside en la separación entre las simulaciones BID y LAST. Pero, es importante notar que la metodología empleada en la aleatorización del tiempo y su ajuste para la compatibilidad con la clase C_Replay permanece idéntica en ambos tipos de simulación. Esto es bueno, pues las alteraciones en uno de los modos resultan en mejoras automáticas en el otro, especialmente en lo que concierne al manejo del tiempo entre los ticks.
preview
DoEasy. Elementos de control (Parte 24): El objeto auxiliar WinForms "Pista"

DoEasy. Elementos de control (Parte 24): El objeto auxiliar WinForms "Pista"

En este artículo, elaboraremos nuevamente la lógica de especificación de los objetos principal y básico para todos los objetos de la biblioteca WinForms; asimismo, desarrollaremos el nuevo objeto básico "Pista" y varias de sus clases derivadas para indicar la posible dirección de movimiento de la línea separadora.
preview
Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

En el artículo anterior, analizamos los modelos relacionales que utilizan mecanismos de atención en su arquitectura. Una de las características de dichos modelos es su mayor uso de recursos informáticos. Este artículo propondrá uno de los posibles mecanismos para reducir el número de operaciones computacionales dentro del bloque Self-Attention o de auto-atención, lo cual aumentará el rendimiento del modelo en su conjunto.
preview
Cuantificación en el aprendizaje automático (Parte 1): Teoría, ejemplo de código, análisis sintáctico de la aplicación CatBoost

Cuantificación en el aprendizaje automático (Parte 1): Teoría, ejemplo de código, análisis sintáctico de la aplicación CatBoost

En este artículo, hablaremos de la aplicación teórica de la cuantificación en la construcción de modelos arbóreos. Asimismo, analizaremos los métodos de cuantificación implementados en CatBoost. El material se presentará sin fórmulas matemáticas complejas, en un lenguaje accesible.
preview
Desarrollo de un sistema de repetición (Parte 30): Proyecto Expert Advisor — Clase C_Mouse (IV)

Desarrollo de un sistema de repetición (Parte 30): Proyecto Expert Advisor — Clase C_Mouse (IV)

Aquí te mostraré una técnica que puede ayudarte mucho en varios momentos de tu vida como programador. En contra de lo que muchos dicen, lo limitado no es la plataforma, sino los conocimientos del individuo que lo dice. Lo que se explicará aquí es que con un poco de sentido común y creatividad, se puede hacer que la plataforma MetaTrader 5 sea mucho más interesante y versátil, sin tener que crear programas locos ni nada por el estilo puedes crear un código sencillo, pero seguro y fiable. Utiliza tu ingenio para domar el código con el fin de modificar algo que ya existe, sin eliminar ni añadir una sola línea al código original.
preview
Desarrollo de un sistema de repetición (Parte 38): Pavimentando el terreno (II)

Desarrollo de un sistema de repetición (Parte 38): Pavimentando el terreno (II)

Muchas personas que se hacen llamar programadores de MQL5 no tienen los conocimientos básicos que presentaré en este artículo. Muchos consideran que MQL5 es limitado; sin embargo, todo se debe a la falta de conocimientos. Así que no te avergüences de no saber. Avergüénzate, en cambio, de no preguntar. El simple hecho de obligar a MetaTrader 5 a no permitir que un indicador se duplique, en ningún caso nos da los medios para realizar una comunicación bidireccional entre el indicador y el Expert Advisor. Todavía estamos muy lejos de esto. No obstante, el hecho de que el indicador no se duplique en el gráfico nos da cierta tranquilidad.
preview
Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

En este artículo, se introducirá la herencia en nuestro código anterior. Se implementará un nuevo diseño de base de datos para brindar eficiencia. Además, se creará una clase de gestión de riesgos para abordar los cálculos de volumen.
preview
Indicador de previsión de volatilidad con Python

Indicador de previsión de volatilidad con Python

Hoy pronosticaremos la volatilidad extrema futura utilizando una clasificación binaria. Asimismo, crearemos un indicador de previsión de volatilidad extrema usando el aprendizaje automático.
preview
Teoría de categorías en MQL5 (Parte 14): Funtores con orden lineal

Teoría de categorías en MQL5 (Parte 14): Funtores con orden lineal

Este artículo de la serie sobre la implementación de la teoría de categorías en MQL5 está dedicado a los funtores. Hoy veremos cómo asignar el orden lineal a un conjunto utilizando funtores al analizar dos conjuntos de datos que parecen no tener relación entre sí.
preview
Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)

Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)

Como resultado de las pruebas realizadas en artículos anteriores, hemos concluido que la optimalidad de la estrategia entrenada depende en gran medida de la muestra de entrenamiento utilizada. En este artículo, nos familiarizaremos con un método bastante sencillo y eficaz para seleccionar trayectorias para el entrenamiento de modelos.
preview
Aprendizaje automático y Data Science (Parte 27): Redes neuronales convolucionales (CNN) en los robots comerciales de MetaTrader 5: ¿Merecen la pena?

Aprendizaje automático y Data Science (Parte 27): Redes neuronales convolucionales (CNN) en los robots comerciales de MetaTrader 5: ¿Merecen la pena?

Las redes neuronales convolucionales (CNN) son famosas por su destreza en la detección de patrones en imágenes y vídeos, con aplicaciones que abarcan diversos campos. En este artículo, exploramos el potencial de las CNN para identificar patrones valiosos en los mercados financieros y generar señales comerciales eficaces para los robots comerciales de MetaTrader 5. Descubramos cómo puede aprovecharse esta técnica de aprendizaje automático profundo para tomar decisiones de negociación más inteligentes.
preview
Ciclos y trading

Ciclos y trading

Este artículo trata sobre el uso de ciclos en el trading. Consideraremos construir una estrategia comercial basada en modelos cíclicos.
preview
Regresión neta elástica mediante descenso de coordenadas en MQL5

Regresión neta elástica mediante descenso de coordenadas en MQL5

En este artículo, analizaremos la implementación práctica de la regresión neta elástica para minimizar el sobreajuste y al mismo tiempo separar automáticamente los predictores útiles de aquellos que tienen poco poder de pronóstico.
preview
Algoritmo de optimización aritmética (AOA): De AOA a SOA (Simple Optimization Algorithm)

Algoritmo de optimización aritmética (AOA): De AOA a SOA (Simple Optimization Algorithm)

En este artículo, presentamos el algoritmo de optimización aritmética (AOA) basado en operaciones aritméticas simples: suma, resta, multiplicación y división. Estas operaciones matemáticas básicas sirven como base para encontrar soluciones óptimas a diversos problemas.
preview
Uso del algoritmo de aprendizaje automático PatchTST para predecir la acción del precio durante las próximas 24 horas

Uso del algoritmo de aprendizaje automático PatchTST para predecir la acción del precio durante las próximas 24 horas

En este artículo, aplicamos un algoritmo de red neuronal relativamente complejo lanzado en 2023 llamado PatchTST para predecir la acción del precio durante las próximas 24 horas. Utilizaremos el repositorio oficial, haremos ligeras modificaciones, entrenaremos un modelo para EURUSD y lo aplicaremos para realizar predicciones futuras tanto en Python como en MQL5.
preview
Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Este artículo presenta una guía completa para implementar un sistema comercial sofisticado utilizando análisis de red de causalidad (CNA) y autorregresión vectorial (Vector autoregression, VAR) en MQL5. Abarca los fundamentos teóricos de estos métodos, ofrece explicaciones detalladas de las funciones clave del algoritmo de negociación e incluye código de ejemplo para su aplicación.
preview
DoEasy. Funciones de servicio (Parte 1): Patrones de precios

DoEasy. Funciones de servicio (Parte 1): Patrones de precios

En este artículo empezaremos a desarrollar métodos de búsqueda de patrones de precios usando datos de series temporales. Un patrón tiene una serie de parámetros comunes a todas las clases y tipos de patrones. Todos los datos de este tipo se centrarán en la clase de objeto de patrón abstracto básico. Hoy crearemos una clase de patrón abstracto y una clase de patrón Pin-bar.
preview
Simulador rápido de estrategias comerciales en Python usando Numba

Simulador rápido de estrategias comerciales en Python usando Numba

Este artículo implementaremos un simulador rápido de estrategias para modelos de aprendizaje automático utilizando Numba. En cuanto a su velocidad, superará en un factor de 50 a un simulador de estrategias puramente basado en Python. El autor recomienda usar esta biblioteca para acelerar los cálculos matemáticos, y especialmente cuando se utilizan ciclos.
preview
Desarrollo de asesores expertos autooptimizables en MQL5

Desarrollo de asesores expertos autooptimizables en MQL5

Construya asesores expertos que miren hacia delante y se ajusten a cualquier mercado.
preview
Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS)

Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS)

Este artículo analiza el algoritmo AOS (Atomic Orbital Search), que usa conceptos de modelos orbitales atómicos para modelar la búsqueda de soluciones. El algoritmo se basa en distribuciones de probabilidad y en la dinámica de las interacciones en el átomo. El artículo analiza con detalle los aspectos matemáticos del AOS, incluida la actualización de las posiciones de las soluciones candidatas y los mecanismos de absorción y liberación de energía. El AOS descubre nuevos horizontes para la aplicación de los principios cuánticos a los problemas computacionales al ofrecer un enfoque innovador de la optimización.
preview
DoEasy. Elementos de control (Parte 15): Objeto WinForms TabControl - múltiples filas de encabezados de pestañas, métodos de trabajo con pestañas

DoEasy. Elementos de control (Parte 15): Objeto WinForms TabControl - múltiples filas de encabezados de pestañas, métodos de trabajo con pestañas

En este artículo, continuaremos desarrollando el objeto WinForm TabControl: hoy crearemos la clase de objeto de pestaña, haremos posible la disposición de los encabezados de las pestañas en varias filas y añadiremos los métodos para trabajar con las pestañas del objeto.
preview
DoEasy. Controles (Parte 23): mejorando los objetos WinForms TabControl y SplitContainer

DoEasy. Controles (Parte 23): mejorando los objetos WinForms TabControl y SplitContainer

En este artículo, añadiremos los nuevos eventos de ratón respecto a los límites de los espacios de trabajo WinForms, y también corregiremos algunos errores en los controles TabControl y SplitContainer.
preview
Teoría de categorías en MQL5 (Parte 22): Una mirada distinta a las medias móviles

Teoría de categorías en MQL5 (Parte 22): Una mirada distinta a las medias móviles

En el presente artículo intentaremos simplificar los conceptos tratados en esta serie centrándonos en solo un indicador, el más común y probablemente el más fácil de entender: la media móvil. También veremos el significado y las posibles aplicaciones de las transformaciones naturales verticales.
preview
Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex

Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex

Este artículo le presentará los secretos de la alquimia algorítmica, introduciéndole con precisión las particularidades de los paisajes financieros. Asimismo, aprenderá cómo los bosques aleatorios transforman los datos en predicciones y le servirán de ayuda al navegar por las complejidades de los mercados financieros. Intentaremos identificar el papel de los bosques aleatorios en los datos financieros y comprobaremos si pueden ayudar a aumentar los beneficios.