Teoría de Categorías en MQL5 (Parte 17): Funtores y monoides
Este es el último artículo de la serie sobre funtores. En él, revisaremos los monoides como categoría. Los monoides, que ya hemos introducido en esta serie, se utilizan aquí para ayudar a dimensionar la posición junto con los perceptrones multicapa.
Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte I)
Desglosaremos el código principal de MQL5 en fragmentos de código especificados para ilustrar la integración de Telegram y WhatsApp para recibir notificaciones de señales del indicador Trend Constraint que estamos creando en esta serie de artículos. Esto ayudará a los traders, tanto novatos como experimentados, a comprender el concepto con facilidad. En primer lugar, vamos a cubrir la configuración de MetaTrader 5 para las notificaciones y su importancia para el usuario. Esto ayudará a los desarrolladores a tomar notas para aplicarlas en sus sistemas.
Optimización de carteras en Python y MQL5
Este artículo explora técnicas avanzadas de optimización de cartera utilizando Python y MQL5 con MetaTrader 5. Demuestra cómo desarrollar algoritmos para el análisis de datos, la asignación de activos y la generación de señales comerciales, enfatizando la importancia de la toma de decisiones basada en datos en la gestión financiera moderna y la mitigación de riesgos.
Desarrollamos un asesor experto multidivisa (Parte 18): Automatización de la selección de grupos considerando el periodo forward
Seguimos automatizando los pasos que antes realizábamos manualmente. Esta vez regresaremos a la automatización de la segunda etapa, es decir, a la selección del grupo óptimo de instancias únicas de estrategias comerciales, complementándola con la posibilidad de considerar los resultados de las instancias en el periodo anterior.
Redes neuronales: así de sencillo (Parte 51): Actor-crítico conductual (BAC)
Los dos últimos artículos han considerado el algoritmo SAC (Soft Actor-Critic), que incorpora la regularización de la entropía en la función de la recompensa. Este enfoque equilibra la exploración del entorno y la explotación del modelo, pero solo es aplicable a modelos estocásticos. El presente material analizará un enfoque alternativo aplicable tanto a modelos estocásticos como deterministas.
Teoría de Categorías en MQL5 (Parte 23): Otra mirada a la media móvil exponencial doble
En este artículo, seguiremos analizando desde un nuevo ángulo los indicadores comerciales más populares. Vamos a procesar una composición horizontal de transformaciones naturales. El mejor indicador para ello será la media móvil exponencial doble (Double Exponential Moving Average, DEMA).
Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)
En este artículo repensaremos las cerraduras de código, transformándolas de mecanismos de protección en herramientas para resolver problemas complejos de optimización. Descubra el mundo de las cerraduras de código, no como simples dispositivos de seguridad, sino como inspiración para un nuevo enfoque de la optimización. Hoy crearemos toda una población de "cerraduras" en la que cada cerradura representará una solución única a un problema. A continuación, desarrollaremos un algoritmo que "forzará" estas cerraduras y hallará soluciones óptimas en ámbitos que van desde el aprendizaje automático hasta el desarrollo de sistemas comerciales.
Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales
Las estrategias que se basan en múltiples marcos de tiempo no se pueden probar en los Asesores Expertos ensamblados por defecto debido a la arquitectura de código MQL5 utilizada en las clases de ensamblaje. Exploramos una posible solución a esta limitación para las estrategias que buscan utilizar múltiples marcos temporales en un estudio de caso con la media móvil cuadrática.
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte IV): Apilamiento de modelos
Hoy demostraremos cómo se pueden crear aplicaciones comerciales impulsadas por IA capaces de aprender de sus propios errores. Demostraremos una técnica conocida como apilamiento, mediante la cual usamos 2 modelos para hacer 1 predicción. El primer modelo suele ser un alumno más débil, y el segundo modelo suele ser un modelo más potente que aprende los residuos de nuestro alumno más débil. Nuestro objetivo es crear un conjunto de modelos, para lograr, con suerte, una mayor precisión.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 3): Estrategias dinámicas de seguimiento de tendencias y reversión a la media
Los mercados financieros suelen clasificarse en dos tipos: los que se mueven dentro de un rango y los que siguen una tendencia. Esta visión estática del mercado puede facilitarnos las operaciones a corto plazo. Sin embargo, está desconectado de la realidad del mercado. En este artículo, buscamos comprender mejor cómo se mueven exactamente los mercados financieros entre estos dos modos posibles y cómo podemos utilizar nuestra nueva comprensión del comportamiento del mercado para ganar confianza en nuestras estrategias de negociación algorítmica.
Indicador de fuerza y dirección de la tendencia en barras 3D
Hoy estudiaremos un nuevo enfoque del análisis de las tendencias del mercado basado en la visualización tridimensional y el análisis tensorial de la microestructura del mercado.
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos
Dado que el programa puede utilizar varios símbolos, entonces, es necesario crear su propia lista para cada uno de estos símbolos. En este artículo, vamos a combinar estas listas en una colección de datos de tick. En realidad, se trata de una lista común a base de la clase de la matriz dinámica de punteros a las instancias de la clase CObject y sus herederos de la Biblioteca estándar.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 2): Estrategia de scalping en el USDJPY
Únase a nosotros hoy mientras nos desafiamos a nosotros mismos a crear una estrategia comercial en torno al par USDJPY. Operaremos con patrones de velas japonesas que se forman en el marco temporal diario, ya que potencialmente tienen más fuerza detrás. Nuestra estrategia inicial resultó rentable, lo que nos animó a seguir perfeccionándola y añadiendo capas adicionales de seguridad para proteger el capital obtenido.
Creación de un Panel de administración de operaciones en MQL5 (Parte III): Mejora de la interfaz gráfica de usuario con estilización visual (I)
En este artículo, nos centraremos en el estilo visual de la interfaz gráfica de usuario (GUI) de nuestro Panel de Administrador de Trading utilizando MQL5. Exploraremos diversas técnicas y funciones disponibles en MQL5 que permiten personalizar y optimizar la interfaz, garantizando que satisfaga las necesidades de los operadores al tiempo que mantiene una estética atractiva.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas
Hemos logrado desarrollar una forma de ejecutar la repetición de mercado de manera bastante realista y aceptable. Ahora, vamos a continuar con nuestro proyecto y agregar datos para mejorar el comportamiento de la repetición.
Cuantificación en el aprendizaje automático (Parte 2): Preprocesamiento de datos, selección de tablas, entrenamiento del modelo CatBoost
En este artículo, hablaremos de la aplicación práctica de la cuantificación en la construcción de modelos arbóreos. Asimismo, analizaremos los métodos de selección de tablas cuantificadas y el preprocesamiento de datos. El material se presentará sin fórmulas matemáticas complejas, en un lenguaje accesible.
Características del Wizard MQL5 que debe conocer (Parte 38): Bandas de Bollinger
Las bandas de Bollinger son un indicador de envolvente muy común utilizado por muchos traders para colocar y cerrar operaciones manualmente. Examinamos este indicador considerando las diferentes señales posibles que genera, y vemos cómo se podrían poner en uso en un Asesor Experto montado por un asistente.
Desarrollo de un sistema de repetición (Parte 78): Un nuevo Chart Trade (V)
En este artículo, veremos cómo deberemos implementar la parte del receptor. Es decir, aquí implementaremos una versión del Asesor Experto, solo para probar y aprender cómo funciona la comunicación vía protocolo. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Métodos de optimización de la biblioteca ALGLIB (Parte I)
En este artículo nos familiarizaremos con los métodos de optimización de la biblioteca ALGLIB para MQL5. El artículo incluye ejemplos sencillos e ilustrativos de la aplicación de ALGLIB para resolver problemas de optimización, lo que hará que el proceso de dominio de los métodos resulte lo más accesible posible. Asimismo, analizaremos con detalle la conectividad de algoritmos como BLEIC, L-BFGS y NS y resolveremos un sencillo problema de prueba basado en ellos.
Características del Wizard MQL5 que debe conocer (Parte 23): Redes neuronales convolucionales (CNNs, Convolutional Neural Networks)
Las redes neuronales convolucionales son otro algoritmo de aprendizaje automático que tiende a especializarse en descomponer conjuntos de datos multidimensionales en partes constituyentes clave. Examinamos cómo se consigue esto normalmente y exploramos una posible aplicación para los operadores en otra clase de señal del asistente MQL5.
Optimización de portafolios en Fórex: Síntesis de VaR y la teoría de Markowitz
¿Cómo funciona la negociación de portafolios en Fórex? ¿Cómo pueden sintetizarse la teoría de portafolios de Markowitz para optimizar las proporciones de los portafolios y el modelo VaR para optimizar el riesgo de los portafolios? Hoy crearemos un código de teoría de portafolios en el que, por un lado, obtendremos un riesgo bajo y, por otro, una rentabilidad aceptable a largo plazo.
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 2)
El artículo forma parte de una serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT. En esta parte describiremos la organización de nuestro código, los primeros archivos de encabezado y las clases, así como la escritura de las pruebas. Este artículo también incluirá notas breves sobre un desarrollo basado en las pruebas y su aplicación a este proyecto.
Redes neuronales en el trading: Análisis de la situación del mercado usando el Transformador de patrones
A la hora de analizar la situación del mercado con nuestros modelos, el elemento clave es la vela. No obstante, sabemos desde hace tiempo que las velas pueden ayudar a predecir los movimientos futuros de los precios. Y en este artículo aprenderemos un método que nos permitirá integrar ambos enfoques.
Combinación de estrategias de análisis técnico y fundamental en MQL5 para principiantes
En este artículo, analizaremos cómo integrar sin problemas el seguimiento de tendencias y los principios fundamentales en un Asesor Experto para crear una estrategia más sólida. Este artículo demostrará lo fácil que es para cualquiera comenzar a desarrollar algoritmos comerciales personalizados utilizando MQL5.
Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)
Esta es la nueva fase del sistema de repetición/simulación. En esta etapa, la conversación será realmente una conversación, y el contenido se volverá bastante denso. Les insto a leer el artículo con atención y a utilizar siempre las referencias que se proporcionen. Esto les ayudará a comprender mejor lo que se les está explicando.
Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos
Este artículo analizará el uso del algoritmo Go-Explore durante un largo periodo de aprendizaje, ya que la estrategia de elección aleatoria puede no conducir a una pasada rentable a medida que aumenta el tiempo de entrenamiento.
Creamos y optimizamos un sistema comercial basado en los volúmenes negociados (Chaikin Money Flow (CMF))
En este artículo, le presentaremos el indicador Chaikin Money Flow (CMF), basado en el volumen, después de aprender cómo se puede construir, calcular y utilizar. Asimismo, veremos cómo crear un indicador personalizado, analizaremos algunas estrategias sencillas que podemos utilizar y las pondremos a prueba para ver cuál es la mejor.
Modelos de regresión no lineal en la bolsa de valores
Modelos de regresión no lineal en la bolsa de valores: ¿Es posible predecir los mercados financieros? Consideremos la creación de un modelo para pronosticar precios para EURUSD y crear dos robots basados en él: en Python y MQL5.
Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)
En trabajos anteriores, hemos introducido el método del Decision Transformer y varios algoritmos derivados de él. Asimismo, hemos experimentado con distintos métodos de fijación de objetivos. Durante los experimentos, hemos trabajado con distintas formas de fijar objetivos, pero el aprendizaje de la trayectoria ya recorrida por parte del modelo siempre quedaba fuera de nuestra atención. En este artículo, queremos presentar un método que llenará este vacío.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)
Aquí optimizaremos un poco las cosas para facilitar lo que haremos en el próximo artículo. Y también te explicaré cómo puedes visualizar lo que está generando el simulador en términos de aleatoriedad.
Desarrollamos un asesor experto multidivisa (Parte 9): Recopilamos los resultados de optimización de las instancias individuales de una estrategia comercial
Hoy vamos a esbozar los principales pasos para desarrollar nuestro EA. Uno de los primeros será realizar una optimización en una sola instancia de la estrategia comercial desarrollada. Así, intentaremos reunir en un solo lugar toda la información necesaria sobre las pasadas del simulador durante la optimización.
Aprendiendo MQL5 de principiante a profesional (Parte IV): Sobre arrays, funciones y variables globales del terminal
El artículo es una continuación de la serie para principiantes. En él proporcionamos información detallada sobre los arrays de datos y la interacción de datos y funciones, así como de las variables globales del terminal que permiten el intercambio de datos entre diferentes programas MQL5.
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 3)
El presente artículo supone la tercera parte de la serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT. En esta ocasión, hablaremos con detalle sobre la aplicación de un desarrollo basado en pruebas para implementar el intercambio de paquetes CONNECT/CONNACK. Al final de este paso, nuestro cliente DEBERÁ poder comportarse adecuadamente al lidiar con cualquier posible resultado del servidor al intentar conectarse.
Redes neuronales: así de sencillo (Parte 94): Optimización de la secuencia de entrada
Al trabajar con series temporales, siempre utilizamos los datos de origen en su secuencia histórica. Pero, ¿es ésta la mejor opción? Existe la opinión de que cambiar la secuencia de los datos de entrada mejorará la eficacia de los modelos entrenados. En este artículo te invito a conocer uno de los métodos para optimizar la secuencia de entrada.
Análisis causal de series temporales mediante entropía de transferencia
En este artículo, analizamos cómo se puede aplicar la causalidad estadística para identificar variables predictivas. Exploraremos el vínculo entre causalidad y entropía de transferencia, además de presentar código MQL5 para detectar transferencias direccionales de información entre dos variables.
Reimaginando las estrategias clásicas en MQL5 (Parte 13): Minimizar el retraso en los cruces de medias móviles
Los cruces de medias móviles son ampliamente conocidos por los operadores de nuestra comunidad y, sin embargo, la esencia de la estrategia ha cambiado muy poco desde su creación. En este artículo, le presentaremos un ligero ajuste a la estrategia original, cuyo objetivo es minimizar el retraso presente en la estrategia de trading. Todos los seguidores de la estrategia original podrían considerar revisar la estrategia de acuerdo con las ideas que discutiremos hoy. Al utilizar dos medias móviles con el mismo periodo, reducimos considerablemente el retraso en la estrategia de trading, sin violar los principios fundamentales de la estrategia.
Aplicación de la teoría de juegos a algoritmos comerciales
Hoy crearemos un asesor comercial adaptativo de autoaprendizaje basado en DQN de aprendizaje automático, con inferencia causal multivariante, que negociará con éxito simultáneamente en 7 pares de divisas, con agentes de diferentes pares intercambiando información entre sí.
De novato a experto: depuración colaborativa en MQL5
La resolución de problemas puede establecer una rutina concisa para dominar habilidades complejas, como la programación en MQL5. Este enfoque le permite concentrarse en la resolución de problemas al tiempo que desarrolla sus capacidades. Cuantos más problemas abordes, más conocimientos avanzados se transferirán a tu cerebro. Personalmente, creo que la depuración es la forma más efectiva de dominar la programación. Hoy repasaremos el proceso de limpieza de código y analizaremos las mejores técnicas para transformar un programa desordenado en uno limpio y funcional. Lea este artículo y descubra información valiosa.
Ingeniería de características con Python y MQL5 (Parte I): Predicción de medias móviles para modelos de IA de largo plazo
Las medias móviles son, con diferencia, los mejores indicadores para que nuestros modelos de IA realicen predicciones. Sin embargo, podemos mejorar aún más nuestra precisión transformando cuidadosamente nuestros datos. Este artículo le mostrará cómo puede crear modelos de IA capaces de realizar previsiones a más largo plazo que las que realiza actualmente sin que ello suponga una disminución significativa de su nivel de precisión. Es realmente sorprendente lo útiles que son las medias móviles.
Evaluación visual y ajuste comercial en MetaTrader 5
En el simulador de estrategias no solo es posible optimizar los parámetros de un robot comercial. Hoy le mostraremos cómo evaluar post-facto la historia comercial de su cuenta y realizar ajustes en el trading en el simulador cambiando el tamaño de las órdenes stop para las posiciones abiertas.