Evaluación visual y ajuste comercial en MetaTrader 5
En el simulador de estrategias no solo es posible optimizar los parámetros de un robot comercial. Hoy le mostraremos cómo evaluar post-facto la historia comercial de su cuenta y realizar ajustes en el trading en el simulador cambiando el tamaño de las órdenes stop para las posiciones abiertas.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)
En este artículo, continuaremos con la fase de desarrollo del simulador. Sin embargo, ahora veremos cómo crear efectivamente un movimiento del tipo "RANDOM WALK" (paseo aleatorio). Este tipo de movimiento es bastante intrigante, ya que sirve de base para todo lo que sucede en el mercado de capitales. Además, comenzarás a comprender algunos conceptos esenciales para quienes realizan análisis de mercado.
Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)
En este artículo, vamos a empezar a hacer algo que ojalá hubiera hecho hace mucho más tiempo. Sin embargo, debido a la falta de "terreno firme", no me sentía seguro para presentarlo públicamente. Ahora, tengo las bases para poder hacer lo que vamos a empezar a hacer a partir de ahora. Es una buena idea centrarse al máximo en comprender el contenido de este artículo, y no lo digo para que lo leas por leer. Quiero y necesito recalcar que, si no entiendes este artículo en concreto, puedes abandonar por completo cualquier esperanza de comprender el contenido de los siguientes.
Algoritmos de optimización de la población: Evolución de grupos sociales (Evolution of Social Groups, ESG)
En este artículo analizaremos el principio de construcción de algoritmos multipoblacionales y como ejemplo de este tipo de algoritmos consideraremos la evolución de grupos sociales (ESG), un nuevo algoritmo de autor. Así, analizaremos los conceptos básicos, los mecanismos de interacción con la población y las ventajas de este algoritmo, y revisaremos su rendimiento en problemas de optimización.
De novato a experto: depuración colaborativa en MQL5
La resolución de problemas puede establecer una rutina concisa para dominar habilidades complejas, como la programación en MQL5. Este enfoque le permite concentrarse en la resolución de problemas al tiempo que desarrolla sus capacidades. Cuantos más problemas abordes, más conocimientos avanzados se transferirán a tu cerebro. Personalmente, creo que la depuración es la forma más efectiva de dominar la programación. Hoy repasaremos el proceso de limpieza de código y analizaremos las mejores técnicas para transformar un programa desordenado en uno limpio y funcional. Lea este artículo y descubra información valiosa.
Implementación de los cierres parciales en MQL5
En este artículo se desarrolla una clase para gestionar cierres parciales en MQL5 y se integra dentro de un EA de order blocks. Además, se presentan pruebas de backtest comparando la estrategia con y sin parciales, analizando en qué condiciones su uso puede maximizar y asegurar beneficios. Concluimos que especialmente en estilos de trading orientados a movimientos más amplios, el uso de parciales podría ser beneficioso.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa
En este artículo, concluimos la primera fase del desarrollo del sistema de repetición y simulador. Con este hito, afirmo, estimado lector, que el sistema ha alcanzado un nivel avanzado, abriendo camino para la incorporación de nuevas funcionalidades. El objetivo es enriquecer aún más el sistema, convirtiéndolo en una herramienta poderosa para estudios y para el desarrollo de análisis de mercado.
Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5
En este artículo analizaremos los métodos de reducción de la dimensionalidad y su aplicación en el entorno comercial MQL5. En concreto, exploraremos los matices del análisis discriminante lineal (LDA) y el análisis de componentes principales (PCA) y analizaremos su impacto en el desarrollo de estrategias y el análisis de mercados.
Redes neuronales en el trading: Sistema multiagente con validación conceptual (FinCon)
Hoy le proponemos familiarizarnos con el framework FinCon, un sistema multiagente basado en grandes modelos lingüísticos (LLM). El framework usa el refuerzo verbal conceptual para mejorar la toma de decisiones y la gestión del riesgo con el fin de realizar eficazmente diversas tareas financieras.
Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)
Antes de comenzar la segunda fase del desarrollo, es necesario reforzar algunas ideas. Entonces, ¿sabes cómo forzar al MQL5 a hacer lo que es necesario? ¿Has intentado ir más allá de lo que informa la documentación? Si no, prepárate. Porque empezaré a hacer cosas mucho más allá de lo que la mayoría hace normalmente.
Simulación de mercado (Parte 06): Transfiriendo información desde MetaTrader 5 hacia Excel
A muchas personas, especialmente a los no programadores, les resulta muy difícil transferir información entre MetaTrader 5 y otros programas. Uno de esos programas es Excel. Muchos utilizan Excel para gestionar y controlar sus riesgos, ya que es un programa muy bueno y fácil de aprender, incluso para quienes no son programadores de VBA. A continuación, voy a mostrar cómo establecer la comunicación entre MetaTrader 5 y Excel (un método muy sencillo).
Teoría de categorías en MQL5 (Parte 20): Autoatención y transformador
Hoy nos apartaremos un poco de nuestros temas habituales y veremos parte del algoritmo de ChatGPT. ¿Tiene alguna similitud o concepto tomado de las transformaciones naturales? Intentaremos responder estas y otras preguntas usando nuestro código en formato de clase de señal.
Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit
Hoy hemos intentado construir un experto comercial para predecir las cotizaciones de los tipos de cambio. El algoritmo se basa en modelos de clasificación clásicos: la regresión logística y probit. Como filtro para las señales comerciales, hemos utilizado el criterio de la razón de verosimilitud.
Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación
Este artículo presenta un método bastante eficaz de previsión de trayectorias de múltiples agentes, capaz de adaptarse a diversas condiciones ambientales.
Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)
Ahora que hemos mejorado la clase C_Mouse, podemos concentrarnos en crear una clase destinada a establecer una base totalmente nueva de estudios. Como mencioné al inicio del artículo, no utilizaremos herencia o polimorfismo para crear esta nueva clase. En cambio, vamos a modificar, o mejor, agregar nuevos objetos a la línea de precio. Esto es lo que haremos en este primer momento, y en el próximo artículo, mostraré cómo cambiar los estudios. Pero, realizaremos esto sin cambiar el código de la clase C_Mouse. Reconozco que, en la práctica, esto sería más fácilmente logrado mediante herencia o polimorfismo. No obstante, existen otras técnicas para alcanzar el mismo resultado.
Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)
Una de las cosas que más nos puede complicar la vida como programadores es el hecho de suponer cosas. En este artículo, te mostraré los peligros de hacer suposiciones: tanto en la parte de programación MQL5, donde se asume que un tipo tendrá un tamaño determinado, como cuando se utiliza MetaTrader 5, donde se asume que los diferentes servidores funcionan de la misma manera.
Redes neuronales: así de sencillo (Parte 78): Detector de objetos basado en el Transformer (DFFT)
En este artículo, le propongo abordar la creación de una estrategia comercial desde una perspectiva diferente. Hoy no pronosticaremos los movimientos futuros de los precios, sino que trataremos de construir un sistema comercial basado en el análisis de datos históricos.
Métodos de William Gann (Parte II): Creación del indicador Cuadrado de Gann
Crearemos un indicador basado en el Cuadrado de Gann de 9, construido elevando al cuadrado el tiempo y el precio. Prepararemos el código y probaremos el indicador en la plataforma en diferentes intervalos de tiempo.
Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)
El análisis directo de nubes de puntos evita alcanza un tamaño de datos innecesario y mejora la eficacia de los modelos en tareas de clasificación y segmentación. Estos enfoques demuestran un alto rendimiento y solidez frente a las perturbaciones de los datos de origen.
Operar con el Calendario Económico MQL5 (Parte 3): Añadiendo filtros de divisa, importancia y tiempo
En este artículo, implementamos filtros en el panel del calendario económico MQL5 para refinar la visualización de eventos de noticias por divisa, importancia y hora. Primero establecemos criterios de filtrado para cada categoría y luego los integramos en el panel de control para mostrar solo los eventos relevantes. Por último, nos aseguramos de que cada filtro se actualice dinámicamente para proporcionar a los operadores información económica específica y en tiempo real.
Teoría de categorías en MQL5 (Parte 2)
La teoría de categorías es una rama diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales
Continuamos nuestro análisis de los modelos de pronóstico de series temporales. En este artículo le propongo familiarizarnos con un algoritmo complejo construido sobre el uso de un modelo de lenguaje previamente entrenado.
Trading de arbitraje en Forex: Un bot market-maker simple de sintéticos para comenzar
Hoy vamos a desmontar mi primer robot de arbitraje: un proveedor de liquidez (si lo podemos llamar así) en activos sintéticos. Hoy en día este bot está funcionando con éxito como un módulo en un gran sistema de aprendizaje automático, pero he puesto en marcha un viejo robot de arbitraje de divisas de la nube, así que le propongo echarle un vistazo, y pensar en lo que podemos hacer con él hoy.
Métodos de William Gann (Parte II): Creación del indicador Cuadrado de Gann
Crearemos un indicador basado en el Cuadrado de Gann de 9, construido elevando al cuadrado el tiempo y el precio. Prepararemos el código y probaremos el indicador en la plataforma en diferentes intervalos de tiempo.
Teoría de categorías en MQL5 (Parte 3)
La teoría de categorías es una rama diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
Información mutua como criterio para la selección de características paso a paso
En este artículo, presentamos una implementación MQL5 de selección de características paso a paso basada en la información mutua entre un conjunto de predictores óptimos y una variable objetivo.
Del básico al intermedio: Array (I)
Este artículo constituye una transición entre lo que se ha visto hasta ahora y una nueva etapa de estudios. Para comprender este artículo es necesario haber leído los artículos anteriores. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 1): Proyector de gráficos
Este proyecto tiene como objetivo aprovechar el lenguaje MQL5 para desarrollar un conjunto integral de herramientas de análisis para MetaTrader 5. Estas herramientas, que van desde scripts e indicadores hasta modelos de IA y asesores expertos, automatizarán el proceso de análisis del mercado. En ocasiones, este desarrollo producirá herramientas capaces de realizar análisis avanzados sin intervención humana y pronosticar resultados para las plataformas adecuadas. Ninguna oportunidad jamás se perderá. Únase a mí mientras exploramos el proceso de creación de un conjunto sólido de herramientas personalizadas para el análisis de mercado. Comenzaremos desarrollando un programa MQL5 simple que he llamado "Proyector de gráficos" (Chart Projector).
Desarrollamos un asesor experto multidivisa (Parte 16): Efecto de diferentes historias de cotizaciones en los resultados de las pruebas
El asesor experto que estamos desarrollando debería mostrar buenos resultados al negociar con diferentes brókeres. Pero hasta ahora hemos usado las cotizaciones de la cuenta demo de MetaQuotes para las pruebas. Veamos si nuestro asesor experto está listo para trabajar en una cuenta comercial con cotizaciones diferentes a las utilizadas durante las pruebas y la optimización.
Del básico al intermedio: Plantilla y Typename (III)
En este artículo, veremos la primera parte de algo que es muy confuso para que los principiantes lo entiendan. Para que el tema no se vuelva más confuso de lo necesario y quede debidamente explicado, dividiré la explicación en etapas. La primera etapa es la que se mostrará en este artículo. No obstante, aunque parezca que llegamos a un callejón sin salida al final, no será realmente eso lo que estará ocurriendo, ya que el siguiente paso nos llevará a otra situación, que se entenderá mejor en el próximo artículo.
Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python
Hasta ahora, hemos analizado la automatización del inicio de los procedimientos de optimización secuencial de los asesores expertos exclusivamente en el simulador de estrategias estándar. Pero, ¿qué ocurrirá si, entre una ejecución y otra, queremos procesar los datos ya adquiridos con otras herramientas? Hoy intentaremos añadir la posibilidad de crear nuevos pasos de optimización ejecutados por programas escritos en Python.
Creación de una estrategia de retorno a la media basada en el aprendizaje automático
Este artículo propone otro enfoque original para crear sistemas comerciales basados en el aprendizaje automático, usando la clusterización y el etiquetado de transacciones para estrategias de retorno a la media.
Características del Wizard MQL5 que debe conocer (Parte 02): Mapas de Kohonen
Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.
Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico
La integración permite un flujo de trabajo continuo en el que los datos financieros sin procesar de MQL5 se pueden importar a paquetes de procesamiento de datos como Jupyter Lab para realizar análisis avanzados que incluyen pruebas estadísticas.
Creación de barras 3D basadas en el tiempo, el precio y el volumen
Qué son los gráficos de precios multidimensionales en 3D y cómo se crean. Cómo las barras 3D predicen las inversiones de precios, y cómo Python y MetaTrader 5 permiten construir estas barras volumétricas en tiempo real.
Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con Integración RestAPI (Parte 3): Creación de jugadas automáticas y scripts de prueba en MQL5
Este artículo explora la implementación de jugadas automáticas en el juego del tres en raya de Python, integrado con funciones de MQL5 y pruebas unitarias. El objetivo es mejorar la interactividad del juego y asegurar la robustez del sistema a través de pruebas en MQL5. La exposición cubre el desarrollo de la lógica del juego, la integración y las pruebas prácticas, y finaliza con la creación de un entorno de juego dinámico y un sistema integrado confiable.
Creación de un algoritmo de creación de mercado en MQL5
¿Cómo funcionan los creadores de mercado? Consideremos esta cuestión y creemos un algoritmo primitivo de creación de mercado.
Redes neuronales: así de sencillo (Parte 90): Interpolación frecuencial de series temporales (FITS)
Al estudiar el método FEDformer, abrimos la puerta al dominio frecuencial de la representación de series temporales. En este nuevo artículo continuaremos con el tema iniciado, y analizaremos un método que permite no solo el análisis, sino también la predicción de estados posteriores en el ámbito privado.
Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost
AdaBoost, un potente algoritmo de refuerzo diseñado para elevar el rendimiento de sus modelos de IA. AdaBoost, abreviatura de Adaptive Boosting (refuerzo adaptativo), es una sofisticada técnica de aprendizaje por conjuntos que integra a la perfección los aprendices débiles, potenciando su fuerza predictiva colectiva.
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte II): Multimodalidad
En la segunda parte del artículo pasaremos a la aplicación práctica del algoritmo BSO, realizaremos tests con funciones de prueba y compararemos la eficacia de BSO con otros métodos de optimización.