关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优

随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
利用CatBoost机器学习模型作为趋势跟踪策略的过滤器

利用CatBoost机器学习模型作为趋势跟踪策略的过滤器

CatBoost是一种强大的基于树的机器学习模型,擅长基于静态特征进行决策。其他基于树的模型,如XGBoost和随机森林(Random Forest),在稳健性、处理复杂模式的能力以及可解释性方面具有相似特性。这些模型应用广泛,可用于特征分析、风险管理等多个领域。在本文中,我们将逐步介绍如何将训练好的CatBoost模型用作经典移动平均线交叉趋势跟踪策略的过滤器。
preview
交易中的神经网络:双曲型潜在扩散模型(HypDiff)

交易中的神经网络:双曲型潜在扩散模型(HypDiff)

本文研究经由各向异性扩散过程在双曲型潜在空间中编码初始数据的方法。这有助于更准确地保留当前市场状况的拓扑特征,并提升其分析品质。
preview
股票交易中的非线性回归模型

股票交易中的非线性回归模型

股票交易中的非线性回归模型:能否预测金融市场?让我们考虑创建一个用于预测欧元兑美元(EURUSD)汇率的模型,并基于此模型制作两个交易机器人——分别使用Python和MQL5语言。
preview
基于交易量的神经网络分析:未来趋势的关键

基于交易量的神经网络分析:未来趋势的关键

本文探讨了通过将技术分析原理与 LSTM 神经网络架构相结合,基于交易量分析来改进价格预测准确性的可能性。文章特别关注异常交易量的检测与解读、聚类方法的使用,以及基于交易量的特征创建及其在机器学习背景下的定义。
preview
在Python中使用Numba对交易策略进行快速测试

在Python中使用Numba对交易策略进行快速测试

本文实现了一个快速策略测试器,它使用Numba对机器学习模型进行快速策略测试。它的速度比纯 Python 策略回测器快 50 倍。作者推荐使用该库来加速数学计算,尤其是那些涉及循环的计算。
preview
交易中的神经网络:定向扩散模型(DDM)

交易中的神经网络:定向扩散模型(DDM)

在本文中,我们讨论定向扩散模型,其利用数据相关的各向异性、和定向噪声,在前向扩散过程中捕获有意义的图形表征。
preview
原子轨道搜索(AOS)算法

原子轨道搜索(AOS)算法

本文探讨了原子轨道搜索(Atomic Orbital Search,AOS)算法,该算法运用原子轨道模型的概念来模拟解的搜索过程。此算法基于概率分布以及原子内相互作用的动力学原理。本文详细阐述了关于AOS算法的数学层面,包括候选解位置的更新方式,以及能量吸收与释放的机制。AOS算法通过为计算问题提供一种创新的优化方法,为将量子原理应用于计算问题开辟了新思路。
preview
经济预测:探索 Python 的潜力

经济预测:探索 Python 的潜力

如何使用世界银行的经济数据进行预测?当你将人工智能模型和经济学结合起来时会发生什么?
preview
您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习

您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习

蒙特卡洛是我们正在研究的第四种不同的强化学习算法,目的是探索它在向导汇编智能交易系统中的实现。尽管它锚定在随机抽样,但它提供了我们可以利用的多种模拟方法。
preview
算术优化算法(AOA):从AOA到SOA(简单优化算法)

算术优化算法(AOA):从AOA到SOA(简单优化算法)

在本文中,我们介绍了基于简单算术运算(加法、减法、乘法和除法)的算术优化算法(AOA)。这些基本的数学运算是为各种问题寻找最优解的基础。
preview
交易中的神经网络:受控分段

交易中的神经网络:受控分段

在本文中。我们将讨论一种复杂的多模态交互分析和特征理解的方法。
preview
使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器

使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器

本文介绍了一种用于训练前馈神经网络的莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法的实现。与Python的scikit-learn库中的算法进行性能比较分析。初步探讨更简便的学习方法,如梯度下降、带动量的梯度下降和随机梯度下降。
preview
使用 Python 分析天气对农业国家货币的影响

使用 Python 分析天气对农业国家货币的影响

天气与外汇之间有什么关系?传统经济理论长期忽视天气对市场行为的影响。但一切都已改变。让我们尝试找出天气条件与农业货币在市场上的走势之间的联系。
preview
交易中的神经网络:节点-自适应图形表征(NAFS)

交易中的神经网络:节点-自适应图形表征(NAFS)

我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。
preview
MQL5中的逐步特征选择

MQL5中的逐步特征选择

在本文中,我们介绍一个在MQL5中实现的逐步特征选择算法的改进版本。这种方法基于Timothy Masters在其著作《C++和CUDA C中的现代数据挖掘算法》中概述的技术。
preview
使用 MetaTrader 5 的 Python 高频套利交易系统

使用 MetaTrader 5 的 Python 高频套利交易系统

在本文中,我们将创建一个在经纪商眼中仍然合法的套利系统,在外汇市场上创建数千个合成价格,对其进行分析,并成功交易以获取利润。
preview
基于主成分的特征选择与降维

基于主成分的特征选择与降维

本文深入探讨了改进型前向选择成分分析(Forward Selection Component Analysis,FSCA)算法的实现,该算法灵感源自Luca Puggini和Sean McLoone在《前向选择成分分析:算法与应用》一文中所提出的研究。
preview
交易中的神经网络:对比形态变换器(终章)

交易中的神经网络:对比形态变换器(终章)

在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
preview
名义变量的序数编码

名义变量的序数编码

在本文中,我们将讨论并演示如何使用Python和MQL5将名义预测变量转换为适合机器学习算法的数值格式。
preview
人工喷淋算法(ASHA)

人工喷淋算法(ASHA)

本文介绍了人工喷淋算法(Artificial Showering Algorithm,ASHA),这是一种为解决一般优化问题而开发的新型元启发式方法。基于对水流和积聚过程的模拟,该算法构建了理想场的概念,其中要求每个资源单元(水)找到最优解。我们将了解 ASHA 如何调整流和累积原则来有效地分配搜索空间中的资源,并查看其实现和测试结果。
preview
交易中的神经网络:对比形态变换器

交易中的神经网络:对比形态变换器

对比变换器在设计上基于单根烛条水平和整个形态来分析行情。这有助于提升行情趋势建模的品质。甚至,运用对比学习来统调烛条和形态的表示、促进自我调节,并提升预测的准确性。
preview
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
preview
交易中的神经网络:运用形态变换器进行市场分析

交易中的神经网络:运用形态变换器进行市场分析

当我们用模型分析市场形势时,我们主要关注蜡烛条。然而,人们早就知道烛条形态能有助于预测未来的价格走势。在本文中,我们将领略一种能将这两种方法集成的方式。
preview
借助成交量精准洞悉交易动态:超越传统OHLC图表

借助成交量精准洞悉交易动态:超越传统OHLC图表

一种将成交量分析与机器学习技术(特别是LSTM神经网络)相结合的算法交易系统。与主要关注价格波动的传统交易方法不同,该系统强调成交量模式及其衍生指标,以预测市场走势。该方法包含三个主要组成部分:成交量衍生指标分析(一阶和二阶导数)、基于LSTM的成交量模式预测,以及传统技术指标。
preview
您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

SARSA 是 “State-Action-Reward-State-Action” 的缩写,是另一种能在实现强化学习时运用的算法。故此,正如我们在 Q-学习 和 DQN 中看到的那样,我们考察了如何在向导汇编的智能系统中探索和实现它,将其作为独立模型,而不仅仅是一种训练机制。
preview
将互信息作为渐进特征选择的准则

将互信息作为渐进特征选择的准则

在本文中,我们展示了基于最优预测变量集与目标变量之间互信息渐进特征选择的MQL5实现。
preview
数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

CatBoost AI 模型最近在机器学习社区中广受欢迎,因为它们的预测准确性、效率、及针对分散和困难数据集的健壮性。在本文中,我们将详细讨论如何实现这些类型的模型,进而尝试进击外汇市场。
preview
在外汇数据分析中使用关联规则

在外汇数据分析中使用关联规则

如何将超市零售分析中的预测规则应用于真实的外汇市场?购买饼干、牛奶和面包与证券交易所的交易有何关联?本文讨论了一种基于关联规则的算法交易的创新方法。
preview
交易中的神经网络:具有相对编码的变换器

交易中的神经网络:具有相对编码的变换器

自我监督学习是分析大量无标签数据的有效方法。通过令模型适应金融市场的特定特征来提供效率,这有助于提升传统方法的有效性。本文讲述了一种替代的注意力机制,它参考输入之间的相对依赖关系。
preview
原子轨道搜索(AOS)算法:改进与拓展

原子轨道搜索(AOS)算法:改进与拓展

在本文的第二部分,我们将继续开发一种改进版的原子轨道搜索(AOS)算法,重点聚焦于特定操作符的优化设计,以提升算法的效率和适应性。在分析了该算法的基本原理和运行机制之后,我们将探讨提升其性能以及分析复杂解空间能力的方法,并提出新的思路以扩展其作为优化工具的功能。
preview
从Python到MQL5:量子启发式交易系统的探索之旅

从Python到MQL5:量子启发式交易系统的探索之旅

本文探讨了量子启发式交易系统的开发过程,该系统从Python原型过渡到MQL5实现,以应用于现实世界的交易中。该系统运用了量子计算原理(如叠加态和纠缠态)来分析市场状态,尽管这是在经典计算机上使用量子模拟器运行的。该系统的关键特性包括:采用三量子比特系统,可同时分析八种市场状态;设置24小时的回溯观察期;并运用七种技术指标进行市场分析。尽管准确率看似一般,但若结合恰当的风险管理策略,该系统仍能提供显著的优势。
preview
交易中的神经网络:受控分段(终章)

交易中的神经网络:受控分段(终章)

我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
preview
重构经典策略(第十一部分)移动平均线的交叉(二)

重构经典策略(第十一部分)移动平均线的交叉(二)

移动平均线和随机振荡器可用于生成趋势跟踪交易信号。然而,这些信号只有在价格行为发生之后才会被观察到。我们可以有效地利用人工智能克服技术指标中这种固有的滞后性。本文将教您如何创建一个完全自主的人工智能驱动型EA,这种方式可以改进您现有的任何交易策略。即使是最古老的交易策略也可以被改进。
preview
基于Python和MQL5的特征工程(第二部分):价格角度

基于Python和MQL5的特征工程(第二部分):价格角度

在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
交易中的神经网络:广义 3D 引用表达分段

交易中的神经网络:广义 3D 引用表达分段

在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
preview
基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法

基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法

传统的机器学习教导从业者要警惕不要使模型陷入过度拟合。然而,这种观念正受到哈佛大学研究人员最新发表的学术见解的挑战。他们发现,看似过拟合的情形在某些情况下可能是由于提前终止训练过程导致的。我们将展示如何利用研究论文中发表的观点,来改进我们使用人工智能预测市场行为的方式。
preview
基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线

基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线

移动平均线无疑是我们的 AI 模型进行预测的最佳指标。然而,我们可以通过严谨数据变换来进一步提高其准确性。本文将展示如何构建能够预测更远范围的AI模型,超越您目前所实现的水平,同时不会显著降低准确率。移动平均线的实用性确实令人惊叹。
preview
数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)

数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)

在本文中,我们会探讨卷积神经网络(CNN)和递归神经网络(RNN)在股票市场预测中的动态集成。借力 CNN 提取形态的能力,以及 RNN 的精练度,来处理序列数据。我们看看这个强大的组合如何强化交易算法的准确性和效率。