Artikel über maschinelles Lernen im Handel.

icon

Erstellen von KI-basierten Handelsrobotern: native Integration der Bibliotheken für Python, Matrizen und Vektoren, Mathematik und Statistik und vieles mehr.

Finden Sie heraus, wie Sie maschinelles Lernen im Handel einsetzen können. Neuronen, Perzeptronen, Faltungs- und rekurrente Netze, Vorhersagemodelle – beginnen Sie mit den Grundlagen und arbeiten Sie sich bis zur Entwicklung Ihrer eigenen KI vor. Sie lernen, wie man neuronale Netze für den algorithmischen Handel auf Finanzmärkten trainiert und anwendet.

Neuer Artikel
letzte | beste
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 31): Auswahl der Verlustfunktion

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 31): Auswahl der Verlustfunktion

Die Verlustfunktion ist die wichtigste Kennzahl für Algorithmen des maschinellen Lernens, die eine Rückmeldung für den Trainingsprozess liefert, indem sie angibt, wie gut ein bestimmter Satz von Parametern im Vergleich zum beabsichtigten Ziel funktioniert. Wir untersuchen die verschiedenen Formate dieser Funktion in einer nutzerdefinierten MQL5-Assistenten-Klasse.
preview
Datenwissenschaft und ML (Teil 29): Wichtige Tipps für die Auswahl der besten Forex-Daten für AI-Trainingszwecke

Datenwissenschaft und ML (Teil 29): Wichtige Tipps für die Auswahl der besten Forex-Daten für AI-Trainingszwecke

In diesem Artikel befassen wir uns eingehend mit den entscheidenden Aspekten der Auswahl der relevantesten und hochwertigsten Forex-Daten, um die Leistung von KI-Modellen zu verbessern.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 30): Spotlight auf Batch-Normalisierung beim maschinellen Lernen

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 30): Spotlight auf Batch-Normalisierung beim maschinellen Lernen

Die Batch-Normalisierung ist die Vorverarbeitung von Daten, bevor sie in einen Algorithmus für maschinelles Lernen, z. B. ein neuronales Netz, eingespeist werden. Dies geschieht immer unter Berücksichtigung der Art der Aktivierung, die der Algorithmus verwenden soll. Wir untersuchen daher die verschiedenen Ansätze, die man mit Hilfe eines von einem Assistenten zusammengestellten Expert Advisors verfolgen kann, um die Vorteile dieses Ansatzes zu nutzen.
preview
Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI

Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI

Bei vielen Modellen der künstlichen Intelligenz ist es üblich, einen einzigen Zukunftswert vorherzusagen. In diesem Artikel werden wir uns jedoch mit der leistungsstarken Technik der Verwendung von maschinellen Lernmodellen zur Vorhersage mehrerer zukünftiger Werte befassen. Dieser Ansatz, der als mehrstufige Prognose bekannt ist, ermöglicht es uns, nicht nur den Schlusskurs von morgen, sondern auch den von übermorgen und darüber hinaus vorherzusagen. Durch die Beherrschung mehrstufiger Prognosen können Händler und Datenwissenschaftler tiefere Einblicke gewinnen und fundiertere Entscheidungen treffen, was ihre Vorhersagefähigkeiten und strategische Planung erheblich verbessert.
preview
Ihrer eigenes LLM in einen EA integrieren (Teil 5): Handelsstrategie mit LLMs(I) entwickeln und testen – Feinabstimmung

Ihrer eigenes LLM in einen EA integrieren (Teil 5): Handelsstrategie mit LLMs(I) entwickeln und testen – Feinabstimmung

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview
Klassische Strategien neu interpretieren (Teil III): Prognose von höhere Hochs und tiefere Tiefs

Klassische Strategien neu interpretieren (Teil III): Prognose von höhere Hochs und tiefere Tiefs

In dieser Artikelserie werden wir klassische Handelsstrategien empirisch analysieren, um zu sehen, ob wir sie mithilfe von KI verbessern können. In der heutigen Diskussion haben wir versucht, mithilfe des Modells der linearen Diskriminanzanalyse höhere Hochs und tiefere Tiefs vorherzusagen.
preview
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze

Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze

Modelle für maschinelles Lernen verfügen über verschiedene einstellbare Parameter. In dieser Artikelserie werden wir untersuchen, wie Sie Ihre KI-Modelle mithilfe der SciPy-Bibliothek an Ihren spezifischen Markt anpassen können.
preview
Ein Beispiel für automatisch optimierte Take-Profits und Indikatorparameter mit SMA und EMA

Ein Beispiel für automatisch optimierte Take-Profits und Indikatorparameter mit SMA und EMA

Dieser Artikel stellt einen hochentwickelten Expert Advisor für den Devisenhandel vor, der maschinelles Lernen mit technischer Analyse kombiniert. Es konzentriert sich auf den Handel mit Apple-Aktien und bietet adaptive Optimierung, Risikomanagement und mehrere Strategien. Das Backtesting zeigt vielversprechende Ergebnisse mit hoher Rentabilität, aber auch erheblichen Drawdowns, was auf Potenzial für eine weitere Verfeinerung hinweist.
preview
Integration von MQL5 in Datenverarbeitungspakete (Teil 1): Fortgeschrittene Datenanalyse und statistische Verarbeitung

Integration von MQL5 in Datenverarbeitungspakete (Teil 1): Fortgeschrittene Datenanalyse und statistische Verarbeitung

Die Integration ermöglicht einen nahtlosen Arbeitsablauf, bei dem Finanzrohdaten aus MQL5 in Datenverarbeitungspakete wie Jupyter Lab für erweiterte Analysen einschließlich statistischer Tests importiert werden können.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 29): Fortsetzung zu Lernraten mit MLPs

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 29): Fortsetzung zu Lernraten mit MLPs

Zum Abschluss unserer Betrachtung der Empfindlichkeit der Lernrate für die Leistung von Expert Advisors untersuchen wir in erster Linie die adaptiven Lernraten. Diese Lernraten sollen für jeden Parameter in einer Schicht während des Trainingsprozesses angepasst werden, und so bewerten wir die potenziellen Vorteile gegenüber der erwarteten Leistungsgebühr.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 28): GANs überarbeitet mit einer Anleitung zu Lernraten

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 28): GANs überarbeitet mit einer Anleitung zu Lernraten

Die Lernrate ist eine Schrittgröße in Richtung eines Trainingsziels in den Trainingsprozessen vieler maschineller Lernalgorithmen. Wir untersuchen die Auswirkungen, die die vielen Zeitpläne und Formate auf die Leistung eines Generative Adversarial Network haben können, eine Art neuronales Netz, das wir in einem früheren Artikel untersucht haben.
preview
Datenwissenschaft und ML (Teil 27): Convolutional Neural Networks (CNNs) in MetaTrader 5 Trading Bots — funktioniert das?

Datenwissenschaft und ML (Teil 27): Convolutional Neural Networks (CNNs) in MetaTrader 5 Trading Bots — funktioniert das?

Faltende neuronale Netzwerke (Convolutional Neural Networks, CNN) sind für ihre Fähigkeiten bei der Erkennung von Mustern in Bildern und Videos bekannt und werden in den verschiedensten Bereichen eingesetzt. In diesem Artikel untersuchen wir das Potenzial von CNNs zur Erkennung wertvoller Muster auf den Finanzmärkten und zur Erzeugung effektiver Handelssignale für MetaTrader 5-Handelsroboter. Lassen Sie uns herausfinden, wie diese tiefgehende maschinelle Lerntechnik für intelligentere Handelsentscheidungen genutzt werden kann.
preview
Neuronale Netze leicht gemacht (Teil 87): Zeitreihen-Patching

Neuronale Netze leicht gemacht (Teil 87): Zeitreihen-Patching

Die Vorhersage spielt eine wichtige Rolle in der Zeitreihenanalyse. Im neuen Artikel werden wir über die Vorteile des Zeitreihen-Patchings sprechen.
preview
Neuronale Netze leicht gemacht (Teil 86): U-förmiger Transformator

Neuronale Netze leicht gemacht (Teil 86): U-förmiger Transformator

Wir untersuchen weiterhin Algorithmen für die Zeitreihenprognose. In diesem Artikel werden wir eine andere Methode besprechen: den U-förmigen Transformator.
preview
Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage

Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage

In diesem Artikel möchte ich Ihnen eine neue komplexe Methode zur Zeitreihenprognose vorstellen, die die Vorteile von linearen Modellen und Transformer harmonisch vereint.
preview
Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität

Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität

Im zweiten Teil des Artikels werden wir uns mit der praktischen Implementierung des BSO-Algorithmus befassen, Tests mit Testfunktionen durchführen und die Effizienz von BSO mit anderen Optimierungsmethoden vergleichen.
preview
Neuronale Netze leicht gemacht (Teil 84): Umkehrbare Normalisierung (RevIN)

Neuronale Netze leicht gemacht (Teil 84): Umkehrbare Normalisierung (RevIN)

Wir wissen bereits, dass die Vorverarbeitung der Eingabedaten eine wichtige Rolle für die Stabilität der Modellbildung spielt. Für die Online-Verarbeitung von „rohen“ Eingabedaten verwenden wir häufig eine Batch-Normalisierungsschicht. Aber manchmal brauchen wir ein umgekehrtes Verfahren. In diesem Artikel wird einer der möglichen Ansätze zur Lösung dieses Problems erörtert.
preview
Brain Storm Optimierungsalgorithmus (Teil I): Clustering

Brain Storm Optimierungsalgorithmus (Teil I): Clustering

In diesem Artikel befassen wir uns mit einer innovativen Optimierungsmethode namens BSO (Brain Storm Optimization), die von einem natürlichen Phänomen namens „Brainstorming“ inspiriert ist. Wir werden auch einen neuen Ansatz zur Lösung von multimodalen Optimierungsproblemen diskutieren, den die BSO-Methode anwendet. Es ermöglicht die Suche nach mehreren optimalen Lösungen, ohne dass die Anzahl der Teilpopulationen vorher festgelegt werden muss. Wir werden auch die Clustermethoden K-Means und K-Means++ betrachten.
preview
Neuronale Netze leicht gemacht (Teil 83): Der „Conformer“-Algorithmus für räumlich-zeitliche kontinuierliche Aufmerksamkeitstransformation

Neuronale Netze leicht gemacht (Teil 83): Der „Conformer“-Algorithmus für räumlich-zeitliche kontinuierliche Aufmerksamkeitstransformation

In diesem Artikel wird der Conformer-Algorithmus vorgestellt, der ursprünglich für die Wettervorhersage entwickelt wurde, die in Bezug auf Variabilität und Launenhaftigkeit mit den Finanzmärkten verglichen werden kann. Conformer ist eine komplexe Methode. Es kombiniert die Vorteile von Aufmerksamkeitsmodellen und gewöhnlichen Differentialgleichungen.
preview
Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)

Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)

In diesem Artikel werden wir eine andere Art von Modellen erörtern, die auf die Untersuchung der Dynamik des Umgebungszustands abzielen.
preview
Zeitreihen-Clustering für kausales Schlussfolgern

Zeitreihen-Clustering für kausales Schlussfolgern

Clustering-Algorithmen beim maschinellen Lernen sind wichtige unüberwachte Lernalgorithmen, die die ursprünglichen Daten in Gruppen mit ähnlichen Beobachtungen unterteilen können. Anhand dieser Gruppen können Sie den Markt für ein bestimmtes Cluster analysieren, anhand neuer Daten nach den stabilsten Clustern suchen und kausale Schlüsse ziehen. In dem Artikel wird eine originelle Methode für das Clustering von Zeitreihen in Python vorgeschlagen.
preview
Matrix-Faktorisierung: Die Grundlagen

Matrix-Faktorisierung: Die Grundlagen

Da das Ziel hier didaktisch ist, werden wir so einfach wie möglich vorgehen. Das heißt, wir werden nur das implementieren, was wir brauchen: Matrixmultiplikation. Sie werden heute sehen, dass dies ausreicht, um die Matrix-Skalar-Multiplikation zu simulieren. Die größte Schwierigkeit, auf die viele Menschen bei der Implementierung von Code mit Matrixfaktorisierung stoßen, ist folgende: Im Gegensatz zur skalaren Faktorisierung, bei der in fast allen Fällen die Reihenfolge der Faktoren das Ergebnis nicht verändert, ist dies bei der Verwendung von Matrizen nicht der Fall.
preview
Datenwissenschaft und ML (Teil 26): Der ultimative Kampf der Zeitreihenprognosen — LSTM vs. GRU Neuronale Netze

Datenwissenschaft und ML (Teil 26): Der ultimative Kampf der Zeitreihenprognosen — LSTM vs. GRU Neuronale Netze

Im vorigen Artikel haben wir ein einfaches RNN besprochen, das trotz seiner Unfähigkeit, langfristige Abhängigkeiten in den Daten zu verstehen, in der Lage war, eine profitable Strategie zu entwickeln. In diesem Artikel werden sowohl das Long-Short Term Memory (LSTM) als auch die Gated Recurrent Unit (GRU) behandelt. Diese beiden wurden eingeführt, um die Unzulänglichkeiten eines einfachen RNN zu überwinden und es zu überlisten.
preview
SP500 Handelsstrategie in MQL5 für Anfänger

SP500 Handelsstrategie in MQL5 für Anfänger

Entdecken Sie, wie Sie MQL5 nutzen können, um den S&P 500 mit Präzision zu prognostizieren, indem Sie die klassische technische Analyse für zusätzliche Stabilität einbeziehen und Algorithmen mit bewährten Prinzipien für robuste Markteinblicke kombinieren.
preview
Eigenvektoren und Eigenwerte: Explorative Datenanalyse in MetaTrader 5

Eigenvektoren und Eigenwerte: Explorative Datenanalyse in MetaTrader 5

In diesem Artikel werden verschiedene Möglichkeiten untersucht, wie Eigenvektoren und Eigenwerte in der explorativen Datenanalyse eingesetzt werden können, um einzigartige Beziehungen in den Daten aufzudecken.
preview
Algorithmen zur Optimierung mit Populationen: Vogelschwarm-Algorithmus (BSA)

Algorithmen zur Optimierung mit Populationen: Vogelschwarm-Algorithmus (BSA)

Der Artikel befasst sich mit dem vogelschwarmbasierten Algorithmus (BSA), der von den kollektiven Schwarminteraktionen der Vögel in der Natur inspiriert ist. Die unterschiedlichen Suchstrategien der BSA-Individuen, einschließlich des Wechsels zwischen Flucht-, Wachsamkeits- und Futtersuchverhalten, machen diesen Algorithmus vielschichtig. Es nutzt die Prinzipien der Vogelschwärme, der Kommunikation, der Anpassungsfähigkeit, des Führens und Folgens, um effizient optimale Lösungen zu finden.
preview
Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA)

Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA)

Der Wal-Optimierungsalgorithmus (WOA) ist ein metaheuristischer Algorithmus, der durch das Verhalten und die Jagdstrategien von Buckelwalen inspiriert wurde. Die Hauptidee von WOA ist die Nachahmung der so genannten Fressmethode „Blasennetz“, bei der Wale Blasen um ihre Beute herum erzeugen und sie dann in einer spiralförmigen Bewegung angreifen.
preview
Neuronales Netz in der Praxis: Die Sekante

Neuronales Netz in der Praxis: Die Sekante

Wie bereits im theoretischen Teil erläutert, müssen wir bei der Arbeit mit neuronalen Netzen lineare Regressionen und Ableitungen verwenden. Warum? Der Grund dafür ist, dass die lineare Regression eine der einfachsten Formeln ist, die es gibt. Im Grunde genommen ist die lineare Regression nur eine affine Funktion. Wenn wir über neuronale Netze sprechen, sind wir jedoch nicht an den Auswirkungen der direkten linearen Regression interessiert. Wir interessieren uns für die Gleichung, die diese Linie erzeugt. Wir sind nicht so sehr an der erstellten Linie interessiert. Kennen Sie die wichtigste Gleichung, die wir verstehen müssen? Wenn nicht, empfehle ich, diesen Artikel zu lesen, um ihn zu verstehen.
preview
Verwendung des Algorithmus PatchTST für maschinelles Lernen zur Vorhersage der Kursentwicklung in den nächsten 24 Stunden

Verwendung des Algorithmus PatchTST für maschinelles Lernen zur Vorhersage der Kursentwicklung in den nächsten 24 Stunden

In diesem Artikel wenden wir einen relativ komplexen Algorithmus eines neuronalen Netzes aus dem Jahr 2023 namens PatchTST zur Vorhersage der Kursentwicklung der nächsten 24 Stunden an. Wir werden das offizielle Repository verwenden, geringfügige Änderungen vornehmen, ein Modell für EURUSD trainieren und es zur Erstellung von Zukunftsprognosen sowohl in Python als auch in MQL5 anwenden.
preview
Datenwissenschaft und maschinelles Lernen (Teil 25): Forex-Zeitreihenvorhersage mit einem rekurrenten neuronalen Netzwerk (RNN)

Datenwissenschaft und maschinelles Lernen (Teil 25): Forex-Zeitreihenvorhersage mit einem rekurrenten neuronalen Netzwerk (RNN)

Rekurrente neuronale Netze (RNNs) zeichnen sich dadurch aus, dass sie Informationen aus der Vergangenheit nutzen, um zukünftige Ereignisse vorherzusagen. Ihre bemerkenswerten Vorhersagefähigkeiten wurden in verschiedenen Bereichen mit großem Erfolg eingesetzt. In diesem Artikel werden wir RNN-Modelle zur Vorhersage von Trends auf dem Devisenmarkt einsetzen und ihr Potenzial zur Verbesserung der Vorhersagegenauigkeit beim Devisenhandel aufzeigen.
preview
Neuinterpretation klassischer Strategien in Python: Das Kreuzen von MAs

Neuinterpretation klassischer Strategien in Python: Das Kreuzen von MAs

In diesem Artikel wird die klassische Kreuzungsstrategie von gleitenden Durchschnitten erneut untersucht, um ihre aktuelle Wirksamkeit zu bewerten. Angesichts der langen Zeit, die seit ihrer Einführung vergangen ist, untersuchen wir die potenziellen Verbesserungen, die KI für diese traditionelle Handelsstrategie bringen kann. Durch den Einsatz von KI-Techniken wollen wir fortschrittliche Vorhersagefähigkeiten nutzen, um Einstiegs- und Ausstiegspunkte für den Handel zu optimieren, sich an unterschiedliche Marktbedingungen anzupassen und die Gesamtperformance im Vergleich zu herkömmlichen Ansätzen zu verbessern.
preview
Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus

Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus

Der Artikel befasst sich mit dem Boids Algorithmus, der auf einzigartigen Beispielen für das Verhalten von Tierschwärmen basiert. Der Boids-Algorithmus wiederum dient als Grundlage für die Schaffung einer ganzen Klasse von Algorithmen, die unter dem Namen „Schwarmintelligenz“ zusammengefasst werden.
preview
Entwicklung eines Roboters in Python und MQL5 (Teil 1): Vorverarbeitung der Daten

Entwicklung eines Roboters in Python und MQL5 (Teil 1): Vorverarbeitung der Daten

Entwicklung eines auf maschinellem Lernen basierenden Handelsroboters: Ein detaillierter Leitfaden. Der erste Artikel in dieser Reihe befasst sich mit der Erfassung und Aufbereitung von Daten und Merkmalen. Das Projekt wird unter Verwendung der Programmiersprache Python und der Bibliotheken sowie der Plattform MetaTrader 5 umgesetzt.
preview
Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)

Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)

In früheren Arbeiten haben wir immer den aktuellen Zustand der Umwelt bewertet. Gleichzeitig blieb die Dynamik der Veränderungen bei den Indikatoren immer „hinter den Kulissen“. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, mit dem Sie die direkte Veränderung der Daten zwischen 2 aufeinanderfolgenden Umweltzuständen bewerten können.
preview
Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

In diesem Artikel werde ich mich mit dem GTGAN-Algorithmus vertraut machen, der im Januar 2024 eingeführt wurde, um komplexe Probleme der Generierung von Architekturlayouts mit Graphenbeschränkungen zu lösen.
preview
Hybridisierung von Populationsalgorithmen. Sequentielle und parallele Strukturen

Hybridisierung von Populationsalgorithmen. Sequentielle und parallele Strukturen

Hier tauchen wir in die Welt der Hybridisierung von Optimierungsalgorithmen ein, indem wir uns drei Haupttypen ansehen: Strategiemischung, sequentielle und parallele Hybridisierung. Wir werden eine Reihe von Experimenten durchführen, in denen wir die relevanten Optimierungsalgorithmen kombinieren und testen.
preview
Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen

Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen

In diesem Artikel werden wir uns den Mersenne-Twister-Zufallszahlengenerator ansehen und ihn mit dem Standardgenerator in MQL5 vergleichen. Wir werden auch herausfinden, welchen Einfluss die Qualität des Zufallszahlengenerators auf die Ergebnisse der Optimierungsalgorithmen hat.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 23): CNNs

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 23): CNNs

Convolutional Neural Networks sind ein weiterer Algorithmus des maschinellen Lernens, der sich darauf spezialisiert hat, mehrdimensionale Datensätze in ihre wichtigsten Bestandteile zu zerlegen. Wir sehen uns an, wie dies typischerweise erreicht wird, und untersuchen eine mögliche Anwendung für Händler in einer anderen Signalklasse des MQL5-Assistenten.
preview
Erstellung von Zeitreihenvorhersagen mit neuronalen LSTM-Netzen: Normalisierung des Preises und Tokenisierung der Zeit

Erstellung von Zeitreihenvorhersagen mit neuronalen LSTM-Netzen: Normalisierung des Preises und Tokenisierung der Zeit

In diesem Artikel wird eine einfache Strategie zur Normalisierung der Marktdaten anhand der täglichen Spanne und zum Training eines neuronalen Netzes zur Verbesserung der Marktprognosen beschrieben. Die entwickelten Modelle können in Verbindung mit einem bestehenden technischen Analysesystem oder auf eigenständiger Basis verwendet werden, um die allgemeine Marktrichtung vorherzusagen. Der in diesem Artikel skizzierte Rahmen kann von jedem technischen Analysten weiter verfeinert werden, um Modelle zu entwickeln, die sowohl für manuelle als auch für automatisierte Handelsstrategien geeignet sind.
preview
Datenwissenschaft und maschinelles Lernen (Teil 24): Zeitreihenprognose im Forex mit regulären AI-Modellen

Datenwissenschaft und maschinelles Lernen (Teil 24): Zeitreihenprognose im Forex mit regulären AI-Modellen

Auf den Devisenmärkten ist es sehr schwierig, den zukünftigen Trend vorherzusagen, ohne eine Vorstellung von der Vergangenheit zu haben. Nur sehr wenige maschinelle Lernmodelle sind in der Lage, Vorhersagen zu treffen, indem sie vergangene Werte berücksichtigen. In diesem Artikel werden wir erörtern, wie wir klassische (Nicht-Zeitreihen-) Modelle der Künstlichen Intelligenz nutzen können, um den Markt zu schlagen