MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第4回):スタッキングモデル
本日は、自らの失敗から学習するAI搭載の取引アプリケーションの構築方法について解説します。特に、「スタッキング」と呼ばれる手法を紹介します。この手法では、2つのモデルを組み合わせて1つの予測をおこないます。1つ目のモデルは通常、性能が比較的低い学習者であり、2つ目のモデルはその学習者の残差を学習する、より高性能なモデルです。目標は、これらのモデルをアンサンブルとして統合することで、より高精度な予測を実現することです。
ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例
以前の記事で発表されたこれら3つの例にディープラーニング(DL)を加え、以前の結果と比較します。目的は、他のEAにディープラーニングを追加する方法を学ぶことです。
化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学
この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。
行列分解:より実用的なモデリング
行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。
ニューラルネットワークの実践:割線
理論的な部分ですでに説明したように、ニューラルネットワークを扱う場合、線形回帰と導関数を使用する必要があります。なぜでしょうか。その理由は、線形回帰は現存する最も単純な公式の1つだからです。本質的に、線形回帰は単なるアフィン関数です。しかし、ニューラルネットワークについて語るとき、私たちは直接線形回帰の効果には興味がありません。この直線を生み出す方程式に興味があるのです。作られた線にはそれほど興味がありません。私たちが理解すべき主要な方程式をご存じですか。ご存じでなければ、この記事を読んで理解することをお勧めします。
取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ
この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。
ニューラルネットワークが簡単に(第81回):Context-Guided Motion Analysis (CCMR)
これまでの作業では、常に環境の現状を評価しました。同時に、指標の変化のダイナミクスは常に「舞台裏」にとどまっていました。この記事では、連続する2つの環境状態間のデータの直接的な変化を評価できるアルゴリズムを紹介したいと思います。
取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)
最新のマルチモーダル時系列予測方法のほとんどは、独立チャネルアプローチを使用しています。これにより、同じ時系列の異なるチャネルの自然な依存関係が無視されます。2つのアプローチ(独立チャネルと混合チャネル)を賢く使用することが、モデルのパフォーマンスを向上させる鍵となります。
従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル
この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)
モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション
市場の状況を分析する際には、それを個別のセグメントに分割し、主要なトレンドを特定します。しかし、従来の分析手法は一つの側面に偏りがちで、全体像の適切な把握を妨げます。この記事では、複数のオブジェクトを選択できる手法を通じて、状況をより包括的かつ多層的に理解する方法を紹介します。
母集団最適化アルゴリズム:ボイドアルゴリズム
この記事では、動物の群れ行動のユニークな例に基づいたボイドアルゴリズムについて考察しています。その結果、ボイドアルゴリズムは、「群知能(Swarm Intelligence)」の名の下に統合されたアルゴリズム群全体の基礎となった。
知っておくべきMQL5ウィザードのテクニック(第29回):MLPの学習率についての続き
エキスパートアドバイザー(EA)のパフォーマンスに対する学習率の感度を、主に適応学習率を調べることでまとめます。これらの学習率は、訓練の過程で層の各パラメータごとにカスタマイズすることを目的としており、潜在的な利点と期待されるパフォーマンスの差を評価します。
人工生態系ベースの最適化(AEO)アルゴリズム
この記事では、初期の解候補集団を生成し、適応的な更新戦略を適用することで、生態系構成要素間の相互作用を模倣するメタヒューリスティック手法、人工エコシステムベース最適化(AEO: Artificial Ecosystem-based Optimization)アルゴリズムについて検討します。AEOの動作過程として、消費フェーズや分解フェーズ、さらに多様なエージェント行動戦略など、各段階を詳細に説明します。あわせて、本アルゴリズムの特徴と利点についても紹介します。
ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る
この記事では、今後の値動きを予測するというトピックを続けます。Multi-future Transformerのアーキテクチャーをお見せします。その主なアイデアは、未来のマルチモーダル分布をいくつかのユニモーダル分布に分解することで、シーンのエージェント間の相互作用のさまざまなモデルを効果的にシミュレートすることができるというものです。
人工蜂の巣アルゴリズム(ABHA):テストと結果
この記事では、人工蜂の巣アルゴリズム(ABHA)の探索を続け、コードの詳細を掘り下げるとともに、残りのメソッドについて考察します。ご存じのとおり、このモデルにおける各蜂は個別のエージェントとして表現されており、その行動は内部情報、外部情報、および動機付けの状態に依存します。さまざまな関数を用いてアルゴリズムをテストし、その結果を評価表としてまとめて提示します。
アフリカ水牛最適化(ABO)
この記事では、アフリカ水牛の特異な行動に着想を得て2015年に開発されたメタヒューリスティック手法、アフリカ水牛最適化(ABO)アルゴリズムを紹介します。アルゴリズムの実装プロセスと、複雑な問題の解決におけるその高い効率性について詳しく解説しており、最適化分野における有用なツールであることが示されています。
ニューラルネットワークが簡単に(第51回):Behavior-Guided Actor-Critic (BAC)
最後の2つの記事では、エントロピー正則化を報酬関数に組み込んだSoft Actor-Criticアルゴリズムについて検討しました。このアプローチは環境探索とモデル活用のバランスをとりますが、適用できるのは確率モデルのみです。今回の記事では、確率モデルと確定モデルの両方に適用できる代替アプローチを提案します。
知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)
DQN (Deep-Q-Network)は強化学習アルゴリズムであり、機械学習モジュールの学習プロセスにおいて、次のQ値と理想的な行動を予測する際にニューラルネットワークを関与させます。別の強化学習アルゴリズムであるQ学習についてはすでに検討しました。そこでこの記事では、強化学習で訓練されたMLPが、カスタムシグナルクラス内でどのように使用できるかを示すもう1つの例を紹介します。
知っておくべきMQL5ウィザードのテクニック(第74回): 教師あり学習で一目均衡表とADX Wilderのパターンを利用する
前回の記事では、一目均衡表とADXのインジケーターペアを紹介しました。今回は、このペアを教師あり学習でどのように改善できるかを見ていきます。一目均衡表とADXは、サポート/レジスタンスとトレンドを補完する組み合わせとして機能します。今回の教師あり学習アプローチでは、ディープスペクトル混合カーネルを用いたニューラルネットワークを活用し、このインジケーターペアの予測精度を微調整します。通常どおり、この処理はMQL5ウィザードでエキスパートアドバイザー(EA)を組み立てる際に利用できるカスタムシグナルクラスファイル内でおこないます。
知っておくべきMQL5ウィザードのテクニック(第62回):強化学習TRPOでADXとCCIのパターンを活用する
ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事に続き、今回は開発済みモデルの運用中の学習や更新を、強化学習を用いてどのように実現できるかを検討します。この記事で使用するアルゴリズムは、本連載ではまだ扱っていない「TRPO(Trust Region Policy Optimization、信頼領域方策最適化)」として知られる手法です。また、MQL5ウィザードによるEAの組み立ては、モデルのテストをより迅速におこなえるだけでなく、異なるシグナルタイプで配布し検証できる形でセットアップできる点も利点です。
古典的な戦略を再構築する(第6回):多時間枠分析
この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。
PythonとMQL5を使用した特徴量エンジニアリング(第2回):価格の角度
MQL5フォーラムには、価格変動の傾斜を計算する方法についての支援を求める投稿が多数あります。この記事では、取引したい市場における価格の変化によって形成される角度を計算する1つの方法を説明します。さらに、この新しい特徴量の設計に追加の労力と時間を投資する価値があるかどうかについてもお答えします。M1でUSDZARペアを予測する際に、価格の傾斜によってAIモデルの精度が向上するかどうかを調査します。
母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)
前回に引き続き、社会的集団について考えてみたいと思います。この記事では、移動と記憶のアルゴリズムを用いて社会集団の進化を探求しています。その結果は、社会システムの進化を理解し、最適化や解の探索に応用するのに役立つでしょう。
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択
損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
雲モデル最適化(ACMO):実践編
この記事では、ACMO(Atmospheric Cloud Model Optimization:雲モデル最適化)アルゴリズムの実装について、さらに詳しく掘り下げていきます。特に、低気圧領域への雲の移動および水滴の初期化と雲間での分布を含む降雨シミュレーションという2つの重要な側面に焦点を当てます。また、雲の状態を管理し、環境との相互作用を適切に保つために重要な役割を果たす他の手法についても紹介します。
Numbaを使用したPythonの高速取引ストラテジーテスター
この記事では、Numbaを使った機械学習モデルのための高速ストラテジーテスターを実装しています。純粋なPythonのストラテジーテスターと比べて50倍速く動作します。このライブラリを使って特にループを含む数学計算を高速化することを推奨しています
知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN
敵対的生成ネットワーク(GAN: Generative Adversarial Network)は、より正確な結果を得るために、互いに訓練し合うニューラルネットワークのペアです。ExpertSignalクラスにおける金融時系列の予測への応用の可能性を考慮し、これらのネットワークの条件型を採用します。
PythonとMQL5を使用した特徴量エンジニアリング(第4回):UMAP回帰によるローソク足パターン認識
次元削減手法は、機械学習モデルのパフォーマンスを向上させるために広く用いられています。ここでは、UMAP (Uniform Manifold Approximation and Projection)という比較的新しい手法について説明します。UMAPは、古い手法に見られるデータの歪みや人工的な構造といった欠点を明確に克服することを目的として開発されました。UMAPは非常に強力な次元削減技術であり、似たローソク足を新たに効果的にグループ化できるため、アウトオブサンプル(未知データ)に対する誤差率を低減し、取引パフォーマンスを向上させることができます。
取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)
この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。
彗尾アルゴリズム(CTA)
この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。
MQL5における段階的特徴量選択
この記事では、MQL5で実装された段階的特徴量選択の修正バージョンを紹介します。このアプローチは、Timothy Masters著の「Modern Data Mining Algorithms in C++ and CUDA C」で概説されている手法に基づいています。
亀甲進化アルゴリズム(TSEA)
これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
ALGLIBライブラリの最適化手法(第1回):
この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。
取引におけるニューラルネットワーク:相対エンコーディング対応Transformer
自己教師あり学習は、ラベル付けされていない大量のデータを分析する効果的な手段となり得ます。この手法の効率性は、モデルが金融市場特有の特徴に適応することで実現され、従来手法の有効性も向上します。本記事では、入力間の相対的な依存関係や関係性を考慮した新しいAttention(注意)機構を紹介します。
人工部族アルゴリズム(ATA)
本記事では、状況に応じて適応的に動作する独自の二重行動システムを備えた進化的手法、人工部族アルゴリズム(ATA: Artificial Tribe Algorithm)の主要要素と革新点について、詳細に説明します。ATAは、個体学習と社会的学習を組み合わせ、探索には交叉を用い、局所最適に陥った際には移動によって新たな解を探索するためのアルゴリズムです。
最適化アルゴリズムの効率における乱数生成器の品質の役割
この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)
前回の記事で開始した、MQL5を使用したRefMask3Dフレームワークの構築作業を引き続き進めていきます。このフレームワークは、点群におけるマルチモーダルインタラクションと特徴量解析を包括的に研究し、自然言語で提供される説明に基づいてターゲットオブジェクトを特定・識別することを目的としています。