取引における機械学習に関する記事

icon

AIベースの取引ロボットの作成: ネイティブPythonとの統合行列とベクトル数学と統計のライブラリなど

取引に機械学習を使用する方法をご覧ください。ニューロン、パーセプトロン、畳み込みネットワークと再帰型ネットワーク、予測モデルなどの基本から始めて、独自のAIの開発に取り組みます。金融市場でのアルゴリズム取引のためにニューラル ネットワークを訓練して適用する方法を学びます。

新しい記事を追加
最新 | ベスト
preview
彗尾アルゴリズム(CTA)

彗尾アルゴリズム(CTA)

この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。
preview
取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ

取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ

この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。
preview
従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル

従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル

この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。
preview
段階的特徴量選択の基準としての相互情報量

段階的特徴量選択の基準としての相互情報量

この記事では、最適な予測変数セットと目的変数との相互情報量に基づく段階的特徴量選択のMQL5実装を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)

知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)

DQN (Deep-Q-Network)は強化学習アルゴリズムであり、機械学習モジュールの学習プロセスにおいて、次のQ値と理想的な行動を予測する際にニューラルネットワークを関与させます。別の強化学習アルゴリズムであるQ学習についてはすでに検討しました。そこでこの記事では、強化学習で訓練されたMLPが、カスタムシグナルクラス内でどのように使用できるかを示すもう1つの例を紹介します。
preview
ニューラルネットワークが簡単に(第91回):周波数領域予測(FreDF)

ニューラルネットワークが簡単に(第91回):周波数領域予測(FreDF)

周波数領域における時系列の分析と予測を継続的に探求していきます。この記事では、これまでに学習した多くのアルゴリズムに追加できる、周波数領域でデータを予測する新しい方法について説明します。
preview
最適化アルゴリズムの効率における乱数生成器の品質の役割

最適化アルゴリズムの効率における乱数生成器の品質の役割

この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
preview
名義変数の順序符号化

名義変数の順序符号化

この記事では、PythonとMQL5の両方を使用して、名義予測値を機械学習アルゴリズムに適した数値フォーマットに変換する方法について議論し、実演します。
preview
ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

この記事では、2024年1月に導入された、グラフ制約のある建築レイアウト生成の複雑な問題を解くためのGTGAN (Graph Transformer Generative Adversarial Model)アルゴリズムについて知ろうと思います。
preview
亀甲進化アルゴリズム(TSEA)

亀甲進化アルゴリズム(TSEA)

これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
preview
古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

この連載では、古典的な戦略を再検討し、AIを使って戦略を改善できるかどうかを検証します。今日の記事では、複数の相関する証券をまとめて分析するという一般的な戦略について検討し、エキゾチックな通貨ペアであるUSDZAR(米ドル/南アフリカランド)に焦点を当てます。
preview
取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション

取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション

市場の状況を分析する際には、それを個別のセグメントに分割し、主要なトレンドを特定します。しかし、従来の分析手法は一つの側面に偏りがちで、全体像の適切な把握を妨げます。この記事では、複数のオブジェクトを選択できる手法を通じて、状況をより包括的かつ多層的に理解する方法を紹介します。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

前回の記事で開始した、MQL5を使用したRefMask3Dフレームワークの構築作業を引き続き進めていきます。このフレームワークは、点群におけるマルチモーダルインタラクションと特徴量解析を包括的に研究し、自然言語で提供される説明に基づいてターゲットオブジェクトを特定・識別することを目的としています。
preview
アフリカ水牛最適化(ABO)

アフリカ水牛最適化(ABO)

この記事では、アフリカ水牛の特異な行動に着想を得て2015年に開発されたメタヒューリスティック手法、アフリカ水牛最適化(ABO)アルゴリズムを紹介します。アルゴリズムの実装プロセスと、複雑な問題の解決におけるその高い効率性について詳しく解説しており、最適化分野における有用なツールであることが示されています。
preview
CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する

CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する

CatBoostは、定常的な特徴量に基づいて意思決定をおこなうことに特化した、強力なツリーベースの機械学習モデルです。XGBoostやRandom Forestといった他のツリーベースモデルも、堅牢性、複雑なパターンへの対応力、そして高い解釈性といった点で共通した特長を備えています。これらのモデルは、特徴量分析からリスク管理に至るまで、幅広い分野で活用されています。本記事では、学習済みのCatBoostモデルを、従来型の移動平均クロスを用いたトレンドフォロー戦略のフィルターとして活用する手順を解説します。戦略構築の過程で直面しうる課題を取り上げながら、具体的な開発プロセスへの理解を深めることを目的としています。MetaTrader 5からのデータ取得、Pythonによる機械学習モデルの学習、そしてそれをMetaTrader 5のエキスパートアドバイザー(EA)へ統合するまでのワークフローをご紹介します。記事の終盤では、統計的検証を通じて戦略の有効性を確認し、現在のアプローチをもとにした今後の展望についても考察していきます。
preview
取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。
preview
古典的な戦略を再構築する(第4回):SP500と米財務省中期証券

古典的な戦略を再構築する(第4回):SP500と米財務省中期証券

この連載では、最新のアルゴリズムを用いて古典的な取引戦略を分析し、AIによって戦略を改善できるかどうかを検証します。本日の記事では、SP500と米財務省中期証券との関係を活用した古典的な取引手法を再考します。
preview
母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

ここでは、最適化アルゴリズムのハイブリダイゼーションの世界に飛び込み、3つの主要なタイプ、すなわち戦略混合、逐次ハイブリダイゼーション、並列ハイブリダイゼーションについて見ていきます。関連する最適化アルゴリズムを組み合わせ、テストする一連の実験をおこないます。
preview
知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

サポートベクトル回帰(SVR)は、2つのデータセット間の関係を最も適切に表現する関数または「超平面」を見つけるための理想的な手法です。本稿では、MQL5ウィザードのカスタムクラス内での時系列予測において、この手法を活用することを試みます。
preview
知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。
preview
ニューラルネットワークが簡単に(第92回):周波数および時間領域における適応的予測

ニューラルネットワークが簡単に(第92回):周波数および時間領域における適応的予測

FreDF法の著者は、周波数領域と時間領域を組み合わせた予測の利点を実験的に確認しました。しかし、重みハイパーパラメータの使用は、非定常時系列には最適ではありません。この記事では、周波数領域と時間領域における予測の適応的組み合わせの方法について学びます。
preview
ニューラルネットワークの実践:直線関数

ニューラルネットワークの実践:直線関数

この記事では、データベース内のデータを表現できる関数を取得するためのいくつかの方法について簡単に説明します。統計や確率の研究を用いて結果を解釈する方法については詳細に触れません。この問題の数学的側面について深く知りたい方にお任せします。これらの問いを検討することは、ニューラルネットワークの研究において非常に重要です。ここでは、このテーマを冷静に掘り下げていきます。
preview
ニューラルネットワークの実践:擬似逆行列(II)

ニューラルネットワークの実践:擬似逆行列(II)

この連載は教育的な性質のものであり、特定の機能の実装を示すことを目的としていないため、この記事では少し異なる方法でおこないます。因数分解を適用して行列の逆行列を取得する方法を示す代わりに、擬似逆行列の因数分解に焦点を当てます。その理由は、特別な方法で一般的な係数を取得することができる場合、一般的な係数を取得する方法を示すことに意味がないからです。さらに良いことに、読者は物事がなぜそのように起こるのかをより深く理解できるようになります。それでは、時間の経過とともにハードウェアがソフトウェアに取って代わる理由を考えてみましょう。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第2回):価格の角度

PythonとMQL5を使用した特徴量エンジニアリング(第2回):価格の角度

MQL5フォーラムには、価格変動の傾斜を計算する方法についての支援を求める投稿が多数あります。この記事では、取引したい市場における価格の変化によって形成される角度を計算する1つの方法を説明します。さらに、この新しい特徴量の設計に追加の労力と時間を投資する価値があるかどうかについてもお答えします。M1でUSDZARペアを予測する際に、価格の傾斜によってAIモデルの精度が向上するかどうかを調査します。
preview
知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。
preview
人工生態系ベースの最適化(AEO)アルゴリズム

人工生態系ベースの最適化(AEO)アルゴリズム

この記事では、初期の解候補集団を生成し、適応的な更新戦略を適用することで、生態系構成要素間の相互作用を模倣するメタヒューリスティック手法、人工エコシステムベース最適化(AEO: Artificial Ecosystem-based Optimization)アルゴリズムについて検討します。AEOの動作過程として、消費フェーズや分解フェーズ、さらに多様なエージェント行動戦略など、各段階を詳細に説明します。あわせて、本アルゴリズムの特徴と利点についても紹介します。
preview
MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化

MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化

この記事では、基本的なチャートの枠を超え、インタラクティブ性、データの層化、ダイナミックな要素といった機能を組み込むことで、トレーダーがトレンド、パターン、相関関係をより効果的に探求できるようにする、データ可視化の高度化について解説します。
preview
効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。
preview
人工蜂の巣アルゴリズム(ABHA):理論と方法

人工蜂の巣アルゴリズム(ABHA):理論と方法

この記事では、2009年に開発された人工蜂の巣アルゴリズム(ABHA)について説明します。このアルゴリズムは、連続的な最適化問題を解決することを目的としています。この記事では、蜂がそれぞれの役割を担って効率的に資源を見つける蜂のコロニーの行動から、ABHAがどのようにインスピレーションを得ているかを探ります。
preview
取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

時系列予測モデルの研究を続けます。本記事では、事前訓練済みの言語モデルを活用した複雑なアルゴリズムについて説明します。
preview
アンサンブル学習におけるゲーティングメカニズム

アンサンブル学習におけるゲーティングメカニズム

この記事では、アンサンブルモデルの検討をさらに進め、「ゲート」という概念に注目し、モデル出力を組み合わせることで予測精度や汎化性能の向上にどのように役立つかを解説します。
preview
取引におけるニューラルネットワーク:時系列予測のための軽量モデル

取引におけるニューラルネットワーク:時系列予測のための軽量モデル

軽量な時系列予測モデルは、最小限のパラメータ数で高いパフォーマンスを実現します。これにより、コンピューティングリソースの消費を抑えつつ、意思決定の迅速化が可能となります。こうしたモデルは軽量でありながら、より複雑なモデルと同等の予測精度を達成できます。
preview
取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

ハイパーネットワークを活用した新しいオブジェクト検出アプローチをご紹介します。ハイパーネットワークはメインモデルの重みを生成し、現在の市場状況の特性を考慮に入れることができます。この手法により、モデルはさまざまな取引条件に適応し、予測精度の向上が可能になります。
preview
雲モデル最適化(ACMO):実践編

雲モデル最適化(ACMO):実践編

この記事では、ACMO(Atmospheric Cloud Model Optimization:雲モデル最適化)アルゴリズムの実装について、さらに詳しく掘り下げていきます。特に、低気圧領域への雲の移動および水滴の初期化と雲間での分布を含む降雨シミュレーションという2つの重要な側面に焦点を当てます。また、雲の状態を管理し、環境との相互作用を適切に保つために重要な役割を果たす他の手法についても紹介します。
preview
母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。
preview
人工電界アルゴリズム(AEFA)

人工電界アルゴリズム(AEFA)

この記事では、クーロンの静電気力の法則に触発された人工電界アルゴリズム(AEFA: Artificial Electric Field Algorithm)を紹介します。このアルゴリズムは、荷電粒子とその相互作用を利用して複雑な最適化問題を解決するために電気現象をシミュレートします。AEFAは、自然法則に基づいた他のアルゴリズムと比較して、独自の特性を示します。
preview
MQL5の分類タスクを強化するアンサンブル法

MQL5の分類タスクを強化するアンサンブル法

本記事では、MQL5における複数のアンサンブル分類器の実装を紹介し、それらがさまざまな状況下でどれほど効果的に機能するかについて論じます。
preview
人工藻類アルゴリズム(AAA)

人工藻類アルゴリズム(AAA)

本稿では、微細藻類に特徴的な生物学的プロセスに基づく人工藻類アルゴリズム(AAA)について考察します。このアルゴリズムには、螺旋運動、進化過程、適応過程が含まれており、最適化問題を解くことができます。この記事では、AAAが機能する原理と、数学的モデリングにおけるその可能性について詳しく分析し、自然とアルゴリズムによる解とのつながりを強調しています。
preview
化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果

化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果

第2回では、化学演算子を1つのアルゴリズムに集め、その結果の詳細な分析を紹介します。化学反応最適化(CRO)法がテスト機能に関する複雑な問題の解決にどのように対処するかを見てみましょう。
preview
取引におけるニューラルネットワーク:TEMPO法の実践結果

取引におけるニューラルネットワーク:TEMPO法の実践結果

TEMPO法について引き続き学習します。この記事では、実際の履歴データに対する提案されたアプローチの実際の有効性を評価します。