取引における機械学習に関する記事

icon

AIベースの取引ロボットの作成: ネイティブPythonとの統合行列とベクトル数学と統計のライブラリなど

取引に機械学習を使用する方法をご覧ください。ニューロン、パーセプトロン、畳み込みネットワークと再帰型ネットワーク、予測モデルなどの基本から始めて、独自のAIの開発に取り組みます。金融市場でのアルゴリズム取引のためにニューラル ネットワークを訓練して適用する方法を学びます。

新しい記事を追加
最新 | ベスト
preview

知っておくべきMQL5ウィザードのテクニック(第15回):ニュートンの多項式を用いたサポートベクトルマシン

サポートベクトルマシンは、データの次元を増やす効果を調べることで、あらかじめ定義されたクラスに基づいてデータを分類します。これは教師あり学習法で、多次元のデータを扱う可能性を考えるとかなり複雑です。この記事では、2次元データの非常に基本的な実装であるニュートンの多項式が、価格とアクションを分類する際にどのように効率的に実行できるかを検討します。
preview

行列分解:より実用的なモデリング

行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。
preview

ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減

Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。
preview

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第4回):スタッキングモデル

本日は、自らの失敗から学習するAI搭載の取引アプリケーションの構築方法について解説します。特に、「スタッキング」と呼ばれる手法を紹介します。この手法では、2つのモデルを組み合わせて1つの予測をおこないます。1つ目のモデルは通常、性能が比較的低い学習者であり、2つ目のモデルはその学習者の残差を学習する、より高性能なモデルです。目標は、これらのモデルをアンサンブルとして統合することで、より高精度な予測を実現することです。
preview

ニューラルネットワークが簡単に(第86回):U字型Transformer

時系列予測アルゴリズムの研究を続けます。この記事では、もう1つの方法であるU字型Transformerについて説明します。
preview

知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト

経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。
preview

ニューラルネットワークが簡単に(第50回):Soft Actor-Critic(モデルの最適化)

前回の記事では、Soft Actor-Criticアルゴリズムを実装しましたが、有益なモデルを訓練することはできませんでした。今回は、先に作成したモデルを最適化し、望ましい結果を得ます。
preview

ニューラルネットワークの実践:最小二乗法

この記事では、数式がコードで実装されたときよりも見た目が複雑になる理由など、いくつかのアイデアについて説明します。さらに、チャートの象限を設定する方法と、MQL5コードで発生する可能性のある1つの興味深い問題についても検討します。正直に言うと、まだどう説明すればいいのかよくわかりません。とにかく、コードで修正する方法を紹介します。
preview

どんな市場でも優位性を得る方法(第3回):VISA消費指数

ビッグデータの世界では、取引戦略を向上させる可能性を秘めた数百万もの代替データセットが存在します。この連載では、最も有益な公共データセットを特定するお手伝いをします。
preview

古典的な戦略を再構築する(第10回):AIはMACDを強化できるか?

MACDインジケーターを経験的に分析し、インジケーターを含む戦略にAIを適用することで、EURUSDの予測精度が向上するかどうかをテストします。さらに、インジケーター自体が価格より予測しやすいのか、またインジケーターの値が将来の価格水準を予測できるのかも同時に評価します。これにより、AI取引戦略にMACDを統合することに投資する価値があるかどうかを判断するための情報を提供します。
preview

ニューラルネットワークが簡単に(第81回):Context-Guided Motion Analysis (CCMR)

これまでの作業では、常に環境の現状を評価しました。同時に、指標の変化のダイナミクスは常に「舞台裏」にとどまっていました。この記事では、連続する2つの環境状態間のデータの直接的な変化を評価できるアルゴリズムを紹介したいと思います。
preview

化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学

この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。
preview
母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

前回に引き続き、社会的集団について考えてみたいと思います。この記事では、移動と記憶のアルゴリズムを用いて社会集団の進化を探求しています。その結果は、社会システムの進化を理解し、最適化や解の探索に応用するのに役立つでしょう。
preview
知っておくべきMQL5ウィザードのテクニック(第29回):MLPの学習率についての続き

知っておくべきMQL5ウィザードのテクニック(第29回):MLPの学習率についての続き

エキスパートアドバイザー(EA)のパフォーマンスに対する学習率の感度を、主に適応学習率を調べることでまとめます。これらの学習率は、訓練の過程で層の各パラメータごとにカスタマイズすることを目的としており、潜在的な利点と期待されるパフォーマンスの差を評価します。
preview
知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。
preview
PythonからMQL5へ:量子に着想を得た取引システムへの旅

PythonからMQL5へ:量子に着想を得た取引システムへの旅

この記事では、量子に着想を得た取引システムの開発について検討し、Pythonプロトタイプから実際の取引のためのMQL5実装への移行について説明します。このシステムは、量子シミュレーターを使用した従来のコンピューター上で実行されますが、重ね合わせや量子もつれなどの量子コンピューティングの原理を使用して市場の状態を分析します。主な機能には、8つの市場状態を同時に分析する3量子ビットシステム、24時間のルックバック期間、および市場分析用の7つのテクニカル指標が含まれます。精度率は控えめに思えるかもしれませんが、適切なリスク管理戦略と組み合わせると大きな優位性が得られます。
preview
知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。
preview
ニューラルネットワークが簡単に(第51回):Behavior-Guided Actor-Critic (BAC)

ニューラルネットワークが簡単に(第51回):Behavior-Guided Actor-Critic (BAC)

最後の2つの記事では、エントロピー正則化を報酬関数に組み込んだSoft Actor-Criticアルゴリズムについて検討しました。このアプローチは環境探索とモデル活用のバランスをとりますが、適用できるのは確率モデルのみです。今回の記事では、確率モデルと確定モデルの両方に適用できる代替アプローチを提案します。
preview
ニューラルネットワークの実践:割線

ニューラルネットワークの実践:割線

理論的な部分ですでに説明したように、ニューラルネットワークを扱う場合、線形回帰と導関数を使用する必要があります。なぜでしょうか。その理由は、線形回帰は現存する最も単純な公式の1つだからです。本質的に、線形回帰は単なるアフィン関数です。しかし、ニューラルネットワークについて語るとき、私たちは直接線形回帰の効果には興味がありません。この直線を生み出す方程式に興味があるのです。作られた線にはそれほど興味がありません。私たちが理解すべき主要な方程式をご存じですか。ご存じでなければ、この記事を読んで理解することをお勧めします。
preview
コードロックアルゴリズム(CLA)

コードロックアルゴリズム(CLA)

この記事では、コードロックを単なるセキュリティメカニズムとしてではなく、複雑な最適化問題を解くためのツールとして再考し、新たな視点から捉えます。セキュリティ装置にとどまらず、最適化への革新的アプローチのインスピレーション源となるコードロックの世界をご紹介します。各ロックが特定の問題の解を表す「ロック」の母集団を作り、機械学習や取引システム開発など様々な分野でこれらのロックを「ピッキング」し、最適解を見つけるアルゴリズムを構築します。
preview
取引におけるニューラルネットワーク:状態空間モデル

取引におけるニューラルネットワーク:状態空間モデル

これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。
preview
主成分を用いた特徴量選択と次元削減

主成分を用いた特徴量選択と次元削減

この記事では、Luca Puggini氏とSean McLoone氏による論文「Forward Selection Component Analysis: Algorithms and Applications」に基づき、修正版のForward Selection Component Analysis (FSCA)アルゴリズムの実装について詳しく解説します。
preview
ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る

ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る

この記事では、今後の値動きを予測するというトピックを続けます。Multi-future Transformerのアーキテクチャーをお見せします。その主なアイデアは、未来のマルチモーダル分布をいくつかのユニモーダル分布に分解することで、シーンのエージェント間の相互作用のさまざまなモデルを効果的にシミュレートすることができるというものです。
preview
母集団最適化アルゴリズム:ボイドアルゴリズム

母集団最適化アルゴリズム:ボイドアルゴリズム

この記事では、動物の群れ行動のユニークな例に基づいたボイドアルゴリズムについて考察しています。その結果、ボイドアルゴリズムは、「群知能(Swarm Intelligence)」の名の下に統合されたアルゴリズム群全体の基礎となった。
preview
人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。
preview
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
preview
人工蜂の巣アルゴリズム(ABHA):テストと結果

人工蜂の巣アルゴリズム(ABHA):テストと結果

この記事では、人工蜂の巣アルゴリズム(ABHA)の探索を続け、コードの詳細を掘り下げるとともに、残りのメソッドについて考察します。ご存じのとおり、このモデルにおける各蜂は個別のエージェントとして表現されており、その行動は内部情報、外部情報、および動機付けの状態に依存します。さまざまな関数を用いてアルゴリズムをテストし、その結果を評価表としてまとめて提示します。
preview
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)

今日は、MQL5を使って複数の戦略をエキスパートアドバイザー(EA)に組み込む可能性を探ります。EAは、指標やスクリプトよりも幅広い機能を提供し、変化する市場環境に適応できる、より洗練された取引アプローチを可能にします。詳しくは、この記事のディスカッションをご覧ください。
preview
古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)

古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)

移動平均とストキャスティクスオシレーターは、トレンドに従う取引シグナルを生成するために使用できます。ただし、これらのシグナルは価格変動が発生した後にのみ観察されます。AIを使用することで、テクニカルインジケーターに内在するこの遅れを効果的に克服できます。この記事では、既存の取引戦略を改善できるような、完全に自律的なAI搭載のエキスパートアドバイザー(EA)を作成する方法を説明します。最も古い取引戦略であっても、改善することは可能です。
preview
取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)

取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)

最新のマルチモーダル時系列予測方法のほとんどは、独立チャネルアプローチを使用しています。これにより、同じ時系列の異なるチャネルの自然な依存関係が無視されます。2つのアプローチ(独立チャネルと混合チャネル)を賢く使用することが、モデルのパフォーマンスを向上させる鍵となります。
preview
独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト

独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
ニューラルネットワークが簡単に(第85回):多変量時系列予測

ニューラルネットワークが簡単に(第85回):多変量時系列予測

この記事では、線形モデルとTransformerの長所を調和的に組み合わせた、新しい複雑な時系列予測手法を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

敵対的生成ネットワーク(GAN: Generative Adversarial Network)は、より正確な結果を得るために、互いに訓練し合うニューラルネットワークのペアです。ExpertSignalクラスにおける金融時系列の予測への応用の可能性を考慮し、これらのネットワークの条件型を採用します。
preview
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
preview
ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例

ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例

以前の記事で発表されたこれら3つの例にディープラーニング(DL)を加え、以前の結果と比較します。目的は、他のEAにディープラーニングを追加する方法を学ぶことです。
preview
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
preview
古典的な戦略を再構築する(第6回):多時間枠分析

古典的な戦略を再構築する(第6回):多時間枠分析

この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。
preview
ブレインストーム最適化アルゴリズム(第2部):マルチモーダリティ

ブレインストーム最適化アルゴリズム(第2部):マルチモーダリティ

記事の第2部では、BSOアルゴリズムの実用的な実装に移り、テスト関数のテストを実施し、BSOの効率を他の最適化手法と比較します。
preview
MQL5における段階的特徴量選択

MQL5における段階的特徴量選択

この記事では、MQL5で実装された段階的特徴量選択の修正バージョンを紹介します。このアプローチは、Timothy Masters著の「Modern Data Mining Algorithms in C++ and CUDA C」で概説されている手法に基づいています。
preview
従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル

従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル

この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。