
データサイエンスと機械学習—ニューラルネットワーク(第01回):フィードフォワードニューラルネットワークの解明
ニューラルネットワークの背後にある操作全体は、多くの人に気に入られていますが、ほとんどの人に理解されていません。この記事では、フィードフォワード型の多層知覚の密室の背後にあるすべてを平易な言葉で説明しようとします。

ニューラルネットワークの実験(第5回):ニューラルネットワークに渡すための入力の正規化
ニューラルネットワークはトレーダーのツールキットの究極のツールです。この仮定が正しいかどうかを確認してみましょう。MetaTrader 5は、取引でニューラルネットワークを使用するための自立した媒体としてアプローチされています。簡単な説明が記載されています。

ニューラルネットワークが簡単に(第13回): Batch Normalization
前回の記事では、ニューラルネットワーク訓練の品質を向上させることを目的とした手法の説明を開始しました。本稿では、このトピックを継続し、別のアプローチであるデータのBatch Normalizationについて説明します。

ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算
ニューラルネットワークの実装のいくつかのタイプについては、これまで説明してきました。 これまで考慮されたネットワークでは、各ニューロンに対して同じ操作が繰り返されます。 さらに論理的な進展としては、ニューラルネットワークの学習プロセスを高速化するために、現代の技術が提供するマルチスレッドコンピューティング機能を利用することです。 可能な実装の1つは、この記事で説明しています。

ニューラルネットワークが簡単に(第12回): ドロップアウト
ニューラルネットワークを研究する次のステップとして、ニューラルネットワークの訓練中に収束を高める手法を検討することをお勧めします。そのような手法はいくつかありますが、本稿では、それらの1つである「ドロップアウト」について考察します。

ニューラルネットワークが簡単に(第4回): リカレントネットワーク
これまでニューラルネットワークの勉強を続けてきました。 この記事では、ニューラルネットワークのもう一つのタイプであるリカレントネットワークについて考えてみます。 このタイプは、MetaTrader 5の取引プラットフォームで価格チャートで表現される時系列を使用するために提案されています。

トランスダクション・アクティブ機械学習におけるスロープブースト
本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.

データサイエンスと機械学習(第23回):LightGBMとXGBoostが多くのAIモデルを凌駕する理由
これらの高度な勾配ブースティング決定木(GBDT)技術は、優れた性能と柔軟性を提供し、金融モデリングやアルゴリズム取引に最適です。これらのツールを活用して取引戦略を最適化し、予測精度を高め、金融市場での競争力を高める方法を学びましょう。

母集団最適化アルゴリズム:カッコウ最適化アルゴリズム(COA)
次に考察するのは、レヴィフライトを使ったカッコウ検索最適化アルゴリズムです。これは最新の最適化アルゴリズムの1つで、リーダーボードの新しいリーダーです。

MQL5の圏論(第14回):線形順序を持つ関手
この記事は、MQL5における圏論の実装に関する広範な連載の一部であり、関手について掘り下げます。関手のおかげで線形順序が集合にどのように写像できるかを検証します。一般的には何のつながりもないと見なされてしまうような2つのデータ集合について考えます。

古典的戦略の再構築:原油
この記事では、教師あり機械学習アルゴリズムを活用することで、古典的な原油取引戦略を強化することを目的として、原油取引戦略を再検討します。ブレント原油価格とWTI原油価格のスプレッドに基づいて、将来のブレント原油価格を予測する最小二乗モデルを構築します。目標は、将来のブレント価格変動の先行指標を特定することです。

データサイエンスと機械学習(第04回):現在の株式市場の暴落を予測する
今回は、米国経済のファンダメンタルズに基づいて、私たちのロジスティックモデルを使って株式市場の暴落の予測を試みます。NETFLIXとAPPLEが私たちが注目する銘柄です、2019年と2020年の過去の市場の暴落を使って、モデルが現在の破滅と暗雲でどのように機能するか見てみましょう。

ニューラルネットワークが簡単に(第48回):Q関数値の過大評価を減らす方法
前回は、連続的な行動空間でモデルを学習できるDDPG法を紹介しました。しかし、他のQ学習法と同様、DDPGはQ関数値を過大評価しやすくなります。この問題によって、しばしば最適でない戦略でエージェントを訓練することになります。この記事では、前述の問題を克服するためのいくつかのアプローチを見ていきます。

ニューラルネットワークが簡単に(第36回):関係強化学習
前回の記事で説明した強化学習モデルでは、元のデータ内のさまざまなオブジェクトを識別できる畳み込みネットワークのさまざまなバリアントを使用しました。畳み込みネットワークの主な利点は、場所に関係なくオブジェクトを識別できることです。同時に、畳み込みネットワークは、オブジェクトやノイズのさまざまな変形がある場合、常にうまく機能するとは限りません。これらは、関係モデルが解決できる問題です。

ニューラルネットワークが簡単に(第3回): コンボリューションネットワーク
ニューラルネットワークの話題の続きとして、畳み込み型ニューラルネットワークの考察を提案します。 この種のニューラルネットワークは、通常、視覚的なイメージの分析に適用されます。 本稿では、これらのネットワークの金融市場への応用について考察します。

PSAR、平均足、ディープラーニングを組み合わせて取引に活用する
このプロジェクトでは、ディープラーニングとテクニカル分析の融合を探求し、FXの取引戦略を検証します。EUR/USDの動きを予測するために、PSAR、SMA、RSIのような伝統的な指標とともにONNXモデルを採用し、迅速な実験のためにPythonスクリプトを使用します。MetaTrader 5のスクリプトは、この戦略をライブ環境に導入し、ヒストリカルデータとテクニカル分析を使用して、情報に基づいた取引決定をおこないます。バックテストの結果は、積極的な利益追求よりもリスク管理と着実な成長に重点を置いた、慎重かつ一貫したアプローチを示しています。

ONNX統合の課題を克服する
ONNXは、異なるプラットフォーム間で複雑なAIコードを統合するための素晴らしいツールです。ただし、この素晴らしいツールを最大限に活用するためにはいくつかの課題に対処する必要があります。この記事では、読者が直面する可能性のある一般的な問題と、それを軽減する方法について説明します。

ニューラルネットワークが簡単に(第6回): ニューラルネットワークの学習率を実験する
これまで、様々な種類のニューラルネットワークをその実装とともに考察してきました。 すべての場合において、ニューラルネットワークは、学習率を選択する必要があるグラディエントディーセント法を用いてトレーニングされました。 今回は、正しく選択されたレートの重要性とニューラルネットワーク学習への影響を例を用いて示したいと思います。

ニューラルネットワークが簡単に(第17部):次元削減
今回は、人工知能モデルについて引き続き説明します。具体的には、教師なし学習アルゴリズムについて学びます。クラスタリングアルゴリズムの1つについては既に説明しました。今回は、次元削減に関連する問題を解決する方法のバリエーションを紹介します。

高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。

母集団最適化アルゴリズム:ホタルアルゴリズム(FA)
今回は、ホタルアルゴリズム(FA)という最適化手法について考えてみます。修正により、このアルゴリズムは部外者から真の評価表リーダーへと変貌を遂げました。

データサイエンスと機械学習(第06回):勾配降下法
勾配降下法は、ニューラルネットワークや多くの機械学習アルゴリズムの訓練において重要な役割を果たします。これは、その印象的な成果にもかかわらず、迅速でインテリジェントなアルゴリズムであり、多くのデータサイエンティストによっていまだに誤解されています。

時系列マイニング用データラベル(第3回):ラベルデータの利用例
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。

MQL5の圏論(第22回):移動平均の別の見方
この記事では、最も一般的で、おそらく最も理解しやすい指標を1つだけ取り上げて、連載で扱った概念の説明の簡略化を試みます。移動平均です。そうすることで、垂直的自然変換の意義と可能な応用について考えます。

ニューラルネットワークが簡単に(第83回):「Conformer」Spatio-Temporal Continuous Attention Transformerアルゴリズム
この記事では、天気予報を目的に開発されたConformerアルゴリズムについて紹介します。天気の変動性や予測の難しさは、金融市場の動きとしばしば比較されます。Conformerは、Attentionモデルと常微分方程式の利点を組み合わせた高度な手法です。

データサイエンスと機械学習(第02回):ロジスティック回帰
データ分類は、アルゴトレーダーとプログラマーにとって非常に重要なものです。この記事では、「はい」と「いいえ」、上と下、買いと売りを識別するのに役立つ可能性のある分類ロジスティックアルゴリズムの1つに焦点を当てます。

Scikit-Learnライブラリの分類器モデルとONNXへの書き出し
この記事では、Scikit-Learnライブラリで利用可能なすべての分類器モデルを適用して、フィッシャーのIrisデータセットの分類タスクを解決する方法について説明します。これらのモデルをONNX形式に変換し、その結果得られたモデルをMQL5プログラムで利用してみます。さらに、完全なIrisデータセットで元のモデルとONNXバージョンの精度を比較します。

母集団最適化アルゴリズム:侵入雑草最適化(IWO)
雑草がさまざまな条件で生き残る驚くべき能力は、強力な最適化アルゴリズムのアイデアになっています。IWO(Invasive Weed Optimization)は、以前にレビューされたものの中で最高のアルゴリズムの1つです。

固有ベクトルと固有値:MetaTrader 5での探索的データ分析
この記事では、データ内の特異な関係性を明らかにするために、固有ベクトルと固有値を探索的データ分析にどのように応用できるかを探ります。

データサイエンスと機械学習(第22回):オートエンコーダニューラルネットワークを活用してノイズからシグナルへと移行することで、よりスマートな取引を実現する
目まぐるしく変化する金融市場の世界では、意味のあるシグナルをノイズから切り離すことが、取引を成功させるために極めて重要です。オートエンコーダは、洗練されたニューラルネットワークアーキテクチャを採用するため、市場データ内の隠れたパターンを発見し、ノイズの多い入力を実用的な洞察に変換することに優れています。この記事では、オートエンコーダがいかに取引慣行に革命をもたらし、トレーダーに意思決定を強化し、今日のダイナミックな市場で競争力を得るための強力なツールを提供しているかを探ります。

ONNXをマスターする:MQL5トレーダーにとってのゲームチェンジャー
機械学習モデルを交換するための強力なオープン標準形式であるONNXの世界に飛び込んでみましょう。ONNXを活用することでMQL5のアルゴリズム取引にどのような変革がもたらされ、トレーダーが最先端のAIモデルをシームレスに統合し、戦略を新たな高みに引き上げることができるようになるかがわかります。クロスプラットフォーム互換性の秘密を明らかにし、MQL5取引の取り組みでONNXの可能性を最大限に引き出す方法を学びましょう。ONNXをマスターするためのこの包括的なガイドで取引ゲームを向上させましょう。

ニューラルネットワークが簡単に(第27部):DQN (Deep Q-Learning)
強化学習の研究を続けます。今回は、「Deep Q-Learning」という手法に触れてみましょう。この手法を用いることで、DeepMindチームはアタリ社のコンピューターゲームのプレイで人間を凌駕するモデルを作成することができました。取引上の問題を解決するための技術の可能性を評価するのに役立つと思います。

ニューラルネットワークが簡単に(第43回):報酬関数なしでスキルを習得する
強化学習の問題は、報酬関数を定義する必要性にあります。それは複雑であったり、形式化するのが難しかったりします。この問題に対処するため、明確な報酬関数を持たずにスキルを学習する、活動ベースや環境ベースのアプローチが研究されています。

独自のLLMをEAに統合する(第2部):環境展開例
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

float16およびfloat8形式のONNXモデルを扱う
機械学習モデルの表現に使用されるデータ形式は、その有効性に決定的な役割を果たします。近年、深層学習モデルを扱うために特別に設計された新しい型のデータがいくつか登場しています。この記事では、現代のモデルで広く採用されるようになった2つの新しいデータ形式に焦点を当てます。

時系列の周波数領域表現:パワースペクトル
この記事では、周波数領域での時系列分析に関連する方法について説明します。予測モデルを構築する際に、時系列のパワースペクトルを調べることの有用性を強調します。この記事では、離散フーリエ変換(dft)を用いて時系列を周波数領域で分析することで得られる有用な視点のいくつかを説明します。