取引における機械学習に関する記事

icon

AIベースの取引ロボットの作成: ネイティブPythonとの統合行列とベクトル数学と統計のライブラリなど

取引に機械学習を使用する方法をご覧ください。ニューロン、パーセプトロン、畳み込みネットワークと再帰型ネットワーク、予測モデルなどの基本から始めて、独自のAIの開発に取り組みます。金融市場でのアルゴリズム取引のためにニューラル ネットワークを訓練して適用する方法を学びます。

新しい記事を追加
最新 | ベスト
preview
ニューラルネットワークの実験(第4回):テンプレート

ニューラルネットワークの実験(第4回):テンプレート

この記事では、実験と非標準的な方法を使用して収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。簡単に説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析

知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析

今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探して試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがこの取り組みにおけるトレーダーの主力であるべきであることを示しています。
preview
MQL5の圏論(第15回):関手とグラフ

MQL5の圏論(第15回):関手とグラフ

この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。
preview
モデル解釈をマスターする:機械学習モデルからより深い洞察を得る

モデル解釈をマスターする:機械学習モデルからより深い洞察を得る

機械学習は複雑で、経験を問わず誰にとってもやりがいのある分野です。この記事では、構築されたモデルを動かす内部メカニズムに深く潜り込み、複雑な特徴、予測、そしてインパクトのある決断の世界を探求し、複雑さを解きほぐし、モデルの解釈をしっかりと把握します。トレードオフをナビゲートし、予測を強化し、確実な意思決定をおこないながら特徴の重要性をランク付けする技術を学びます。この必読書は、機械学習モデルからより多くのパフォーマンスを引き出し、機械学習手法を採用することでより多くの価値を引き出すのに役立ちます。
preview
PythonとMQL5を使用して初めてのグラスボックスモデルを作る

PythonとMQL5を使用して初めてのグラスボックスモデルを作る

機械学習モデルの解釈は難しく、このような高度なテクニックを使用して何らかの価値を得たいのであれば、モデルが予想から外れる理由を理解することが重要です。モデルの内部構造に対する包括的な洞察がなければ、モデルのパフォーマンスを低下させるバグを発見できないことがあります。予測できない機能のエンジニアリングに時間を浪費し、長期的にはモデルのパワーを十分に活用できない危険性があります。幸いなことに、モデルの内部で何が起こっているかを正確に見ることができる、洗練され、よく整備されたオールインワンソリューションがあります。
preview
MQL5の圏論(第17回):関手とモノイド

MQL5の圏論(第17回):関手とモノイド

関手を題材にしたシリーズの最終回となる今回は、圏としてのモノイドを再考します。この連載ですでに紹介したモノイドは、多層パーセプトロンとともに、ポジションサイジングの補助に使われます。
preview
ニューラルネットワークの実験(第1回):幾何学の再検討

ニューラルネットワークの実験(第1回):幾何学の再検討

この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。
preview
ニューラルネットワークが簡単に(第20部):オートエンコーダ

ニューラルネットワークが簡単に(第20部):オートエンコーダ

教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。
preview
ニューラルネットワークが簡単に(第96回):マルチスケール特徴量抽出(MSFformer)

ニューラルネットワークが簡単に(第96回):マルチスケール特徴量抽出(MSFformer)

長期的な依存関係と短期的な特徴量の効率的な抽出と統合は、時系列分析において依然として重要な課題です。正確で信頼性の高い予測モデルを作成するためには、それらを適切に理解し、統合することが必要です。
preview
知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索

知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索

ニューラルアーキテクチャー探索は、理想的なニューラルネットワーク設定を決定するための自動化されたアプローチで、多くのオプションや大規模なテストデータセットに直面したときにプラスになります。固有ベクトルをペアにすることで、この過程がさらに効率的になることを検証します。
preview
SMAとEMAを使った自動最適化された利益確定と指標パラメータの例

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例

この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。
preview
MLモデルとストラテジーテスターの統合(第3回):CSVファイルの管理(II)

MLモデルとストラテジーテスターの統合(第3回):CSVファイルの管理(II)

この記事では、MQL5でCSVファイルを効率的に管理するクラスを作成するための完全ガイドを提供します。データを開き、読み書きし、変換するメソッドの実装を見ていきます。また、情報を保存しアクセスするためにこれらを使用する方法についても検討します。さらに、このようなクラスを使用する際の制限や最も重要な点についても説明します。MQL5でCSVファイルを処理する方法を学びたい人にとって、この記事は貴重なリソースとなるでしょう。
preview
独自のLLMをEAに総合する(第5部): LLMを使った取引戦略の開発とテスト(I) - 微調整

独自のLLMをEAに総合する(第5部): LLMを使った取引戦略の開発とテスト(I) - 微調整

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整(ファインチューニング)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
母集団最適化アルゴリズム:細菌採餌最適化(BFO)

母集団最適化アルゴリズム:細菌採餌最適化(BFO)

大腸菌の採餌戦略は、科学者にBFO最適化アルゴリズムの作成を促しました。このアルゴリズムには、最適化に対する独自のアイデアと有望なアプローチが含まれており、さらに研究する価値があります。
preview
データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて

データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて

ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。
preview
ニューラルネットワークが簡単に(第47回):連続行動空間

ニューラルネットワークが簡単に(第47回):連続行動空間

この記事では、エージェントのタスクの範囲を拡大します。訓練の過程には、どのような取引戦略にも不可欠な資金管理とリスク管理の側面も含まれます。
preview
Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較

Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較

Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。
preview
MQL5行列を使用した誤差逆伝播法によるニューラルネットワーク

MQL5行列を使用した誤差逆伝播法によるニューラルネットワーク

この記事では、行列を使用してMQL5で誤差逆伝播法(バックプロパゲーション)アルゴリズムを適用する理論と実践について説明します。スクリプト、インジケータ、エキスパートアドバイザー(EA)の例とともに、既製のクラスが提示されます。
preview
ニューラルネットワークが簡単に(第31部):進化的アルゴリズム

ニューラルネットワークが簡単に(第31部):進化的アルゴリズム

前回の記事では、非勾配最適化手法の調査を開始しました。遺伝的アルゴリズムについて学びました。今日は、このトピックを継続し、進化的アルゴリズムの別のクラスを検討します。
preview
データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?

データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?

畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。
preview
MQL5における圏論(第12回):順序

MQL5における圏論(第12回):順序

この記事は、MQL5でのグラフの圏論実装に従う連載の一部であり、順序について詳しく説明します。2つの主要な順序タイプを検討することで、順序理論の概念が取引の意思決定に情報を提供する上で、モノイド集合をどのようにサポートできるかを検証します。
preview
古典的な戦略をPythonで再構築する:MAクロスオーバー

古典的な戦略をPythonで再構築する:MAクロスオーバー

この記事では、古典的な移動平均クロスオーバー戦略を再検討し、その現在の有効性を評価します。開始以来の経過時間を考慮して、AI がこの伝統的な取引戦略にもたらす可能性のある機能強化について検討します。AI技術を取り入れることで、高度な予測能力を活用し、取引のエントリとエグジットのポイントを最適化し、さまざまな市場環境に適応し、従来のアプローチと比較して全体的なパフォーマンスを向上させる可能性があることを目指します。
preview
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
preview
ニューラルネットワークが簡単に(第39回):Go-Explore、探検への異なるアプローチ

ニューラルネットワークが簡単に(第39回):Go-Explore、探検への異なるアプローチ

強化学習モデルにおける環境の研究を続けます。この記事では、モデルの訓練段階で効果的に環境を探索することができる、もうひとつのアルゴリズム「Go-Explore」を見ていきます。
preview
ニューラルネットワークが簡単に(第56回):核型ノルムを研究の推進力に

ニューラルネットワークが簡単に(第56回):核型ノルムを研究の推進力に

強化学習における環境の研究は喫緊の課題です。いくつかのアプローチについてすでに見てきました。この記事では、核型ノルムの最大化に基づくもう一つの方法について見てみましょう。これにより、エージェントは新規性と多様性の高い環境状態を特定することができます。
preview
データサイエンスと機械学習(第17回):木の中のお金?外国為替取引におけるランダムフォレストの芸術と科学

データサイエンスと機械学習(第17回):木の中のお金?外国為替取引におけるランダムフォレストの芸術と科学

金融情勢を解読する際の芸術性と正確性の融合についてガイドします。アルゴリズム錬金術の秘密を発見してください。ランダムフォレストがデータを予測能力に変換する方法を明らかにし、株式市場の複雑な地形をナビゲートするための独自の視点を提供します。金融の魔術の核心に触れ、市場の動向を形作り、収益の機会を開拓するランダムフォレストの役割を解き明かす旅にご参加ください。
preview
ニューラルネットワークが簡単に (第42回):先延ばしのモデル、理由と解決策

ニューラルネットワークが簡単に (第42回):先延ばしのモデル、理由と解決策

強化学習の文脈では、モデルの先延ばしにはいくつかの理由があります。この記事では、モデルの先延ばしの原因として考えられることと、それを克服するための方法について考察しています。
preview
ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化

ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化

この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測

PythonとMQL5を使用した特徴量エンジニアリング(第1回):長期AIモデルの移動平均の予測

移動平均は、AIモデルが予測するのに最適な指標です。しかし、データを慎重に変換することで、さらなる精度向上が可能です。本記事では、現在の手法よりもさらに先の未来を、高い精度を維持しながら予測できるAIモデルの構築方法を解説します。移動平均がこれほど有用な指標であることには驚かされます。
preview
RestAPIを統合したMQL5強化学習エージェントの開発(第3回):MQL5で自動手番とテストスクリプトを作成する

RestAPIを統合したMQL5強化学習エージェントの開発(第3回):MQL5で自動手番とテストスクリプトを作成する

この記事では、MQL5関数とユニットテストを統合した、Pythonによる三目並べの自動手番の実装について説明します。目標は、MQL5でのテストを通じて、対戦のインタラクティブ性を向上させ、システムの信頼性を確保することです。このプレゼンテーションでは、対戦ロジックの開発、統合、実地テストについて説明し、最後にダイナミックな対戦環境と堅牢な統合システムを作成します。
preview
ニューラルネットワークが簡単に(第52回):楽観論と分布補正の研究

ニューラルネットワークが簡単に(第52回):楽観論と分布補正の研究

経験再現バッファに基づいてモデルが訓練されるにつれて、現在のActor方策は保存されている例からどんどん離れていき、モデル全体としての訓練効率が低下します。今回は、強化学習アルゴリズムにおけるサンプルの利用効率を向上させるアルゴリズムについて見ていきます。
preview
母集団最適化アルゴリズム:モンキーアルゴリズム(MA)

母集団最適化アルゴリズム:モンキーアルゴリズム(MA)

今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。
preview
MQL5の圏論(第9回):モノイド作用

MQL5の圏論(第9回):モノイド作用

MQL5における圏論の実装についての連載を続けます。ここでは、前の記事で説明したモノイドを変換する手段としてモノイド作用を継続し、応用の増加につなげます。
preview
ニューラルネットワークの実験(第7回):指標の受け渡し

ニューラルネットワークの実験(第7回):指標の受け渡し

指標をパーセプトロンに渡す例。この記事では、一般的な概念について説明し、最も単純な既製のエキスパートアドバイザー(EA)と、それに続く最適化とフォワードテストの結果を紹介します。
preview
ニューラルネットワークが簡単に(第49回):Soft Actor-Critic

ニューラルネットワークが簡単に(第49回):Soft Actor-Critic

連続行動空間の問題を解決するための強化学習アルゴリズムについての議論を続けます。この記事では、Soft Actor-Critic (SAC)アルゴリズムについて説明します。SACの主な利点は、期待される報酬を最大化するだけでなく、行動のエントロピー(多様性)を最大化する最適な方策を見つけられることです。
preview
母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。
preview
データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ

データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ

AdaBoostは、AIモデルのパフォーマンスを向上させるために設計された強力なブースティングアルゴリズムです。AdaBoostはAdaptive Boostingの略で、弱い学習機をシームレスに統合し、その集合的な予測力を強化する洗練されたアンサンブル学習技法です。
preview
ニューラルネットワークが簡単に(第28部):方策勾配アルゴリズム

ニューラルネットワークが簡単に(第28部):方策勾配アルゴリズム

強化学習法の研究を続けます。前回は、Deep Q-Learning手法に触れました。この手法では、特定の状況下でとった行動に応じて、これから得られる報酬を予測するようにモデルを訓練します。そして、方策と期待される報酬に応じた行動がとられます。ただし、Q関数を近似的に求めることは必ずしも可能ではありません。その近似が望ましい結果を生み出さないこともあります。このような場合、効用関数ではなく、行動の直接的な方針(戦略)に対して、近似的な手法が適用されます。その1つが方策勾配です。
preview
トレンドフォロー型ボラティリティ予測のための隠れマルコフモデル

トレンドフォロー型ボラティリティ予測のための隠れマルコフモデル

隠れマルコフモデル(HMM)は、観測可能な価格変動を分析することで、市場の潜在的な状態を特定する強力な統計手法です。取引においては、市場レジームの変化をモデル化・予測することで、ボラティリティの予測精度を高め、トレンドフォロー戦略の構築に役立ちます。本記事では、HMMをボラティリティのフィルターとして活用し、トレンドフォロー戦略を開発するための一連の手順を紹介します。
preview
母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)

母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)

焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。