取引における機械学習に関する記事

icon

AIベースの取引ロボットの作成: ネイティブPythonとの統合行列とベクトル数学と統計のライブラリなど

取引に機械学習を使用する方法をご覧ください。ニューロン、パーセプトロン、畳み込みネットワークと再帰型ネットワーク、予測モデルなどの基本から始めて、独自のAIの開発に取り組みます。金融市場でのアルゴリズム取引のためにニューラル ネットワークを訓練して適用する方法を学びます。

新しい記事を追加
最新 | ベスト
preview
ニューラルネットワークが簡単に(第25部):転移学習の実践

ニューラルネットワークが簡単に(第25部):転移学習の実践

前々回、前回と、ニューラルネットワークのモデルを作成・編集するためのツールを開発しました。いよいよ転移学習技術の利用可能性を実例で評価することになります。
preview
母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法

母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法

この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。
preview
ニューラルネットワークが簡単に(第44回):ダイナミクスを意識したスキルの習得

ニューラルネットワークが簡単に(第44回):ダイナミクスを意識したスキルの習得

前回は、様々なスキルを学習するアルゴリズムを提供するDIAYN法を紹介しました。習得したスキルはさまざまな仕事に活用できます。しかし、そのようなスキルは予測不可能なこともあり、使いこなすのは難しくなります。この記事では、予測可能なスキルを学習するアルゴリズムについて見ていきます。
preview
ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)

ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)

強化学習手法を検討するときは常に、環境を効率的に探索するという問題に直面します。この問題を解決すると、多くの場合、アルゴリズムが複雑になり、追加モデルの訓練が必要になります。この記事では、この問題を解決するための別のアプローチを見ていきます。
preview
データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント

データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント

この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。
preview
どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス

どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス

シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。
preview
母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム

母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム

この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。
preview
データサイエンスと機械学習(第16回):決定木を見直す

データサイエンスと機械学習(第16回):決定木を見直す

連載「データサイエンスと機械学習」の最新作で、決定木の複雑な世界に飛び込みましょう。戦略的な洞察を求めるトレーダーのために、この記事は包括的な総括として、市場動向の分析において決定木が果たす強力な役割に光を当てています。これらのアルゴリズム木の根と枝を探り、取引の意思決定を強化する可能性を解き明かします。決定木について新たな視点から学び、複雑な金融市場をナビゲートする上で、決定木をどのように味方にできるかを発見しましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト

知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト

バッチ正規化とは、ニューラルネットワークのような機械学習アルゴリズムに投入するデータの前処理です。これは、アルゴリズムが使用する活性化の種類を常に意識しながらおこなわれます。そこで、エキスパートアドバイザー(EA)を使って、そのメリットを享受するためのさまざまなアプローチを探ります。
preview
ニューラルネットワークが簡単に(第57回):Stochastic Marginal Actor-Critic (SMAC)

ニューラルネットワークが簡単に(第57回):Stochastic Marginal Actor-Critic (SMAC)

今回は、かなり新しいStochastic Marginal Actor-Critic (SMAC)アルゴリズムを検討します。このアルゴリズムは、エントロピー最大化の枠組みの中で潜在変数方策を構築することができます。
preview
MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装

MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装

この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。
preview
独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成

Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成

この記事では、Pythonでランダムフォレストモデルを作成し、モデルを訓練して、データ前処理をおこなったONNXパイプラインとして保存します。その後、MetaTrader 5ターミナルでモデルを使用します。
preview
ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練

ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練

さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。
preview
MQL5の圏論(第18回):ナチュラリティスクエア(自然性の四角形)

MQL5の圏論(第18回):ナチュラリティスクエア(自然性の四角形)

この記事では、圏論の重要な柱である自然変換を紹介します。一見複雑に見える定義に注目し、次に本連載の「糧」であるボラティリティ予測について例と応用を掘り下げていきます。
preview
データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決

データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決

MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。
preview
知っておくべきMQL5ウィザードのテクニック(第23回):CNN

知っておくべきMQL5ウィザードのテクニック(第23回):CNN

畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。
preview
母集団最適化アルゴリズム:魚群検索(FSS)

母集団最適化アルゴリズム:魚群検索(FSS)

魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。
preview
時系列マイニングのためのデータラベル(第4回):ラベルデータを使用した解釈可能性の分解

時系列マイニングのためのデータラベル(第4回):ラベルデータを使用した解釈可能性の分解

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。
preview
PythonとMQL5を使用して初めてのグラスボックスモデルを作る

PythonとMQL5を使用して初めてのグラスボックスモデルを作る

機械学習モデルの解釈は難しく、このような高度なテクニックを使用して何らかの価値を得たいのであれば、モデルが予想から外れる理由を理解することが重要です。モデルの内部構造に対する包括的な洞察がなければ、モデルのパフォーマンスを低下させるバグを発見できないことがあります。予測できない機能のエンジニアリングに時間を浪費し、長期的にはモデルのパワーを十分に活用できない危険性があります。幸いなことに、モデルの内部で何が起こっているかを正確に見ることができる、洗練され、よく整備されたオールインワンソリューションがあります。
preview
ニューラルネットワークが簡単に(第45回):状態探索スキルの訓練

ニューラルネットワークが簡単に(第45回):状態探索スキルの訓練

明示的な報酬関数なしに有用なスキルを訓練することは、階層的強化学習における主な課題の1つです。前回までに、この問題を解くための2つのアルゴリズムを紹介しましたが、環境調査の完全性についての疑問は残されています。この記事では、スキル訓練に対する異なるアプローチを示します。その使用は、システムの現在の状態に直接依存します。
preview
ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善

ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善

前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。
preview
知っておくべきMQL5ウィザードのテクニック(第10回):型破りなRBM

知っておくべきMQL5ウィザードのテクニック(第10回):型破りなRBM

制限ボルツマンマシン(Restrictive Boltzmann Machine、RBM)は、基本的なレベルでは、次元削減による教師なし分類に長けた2層のニューラルネットワークです。その基本原理を採用し、常識にとらわれない方法で設計し直して訓練すれば有用なシグナルフィルタが得られるかどうかを検証します。
preview
ニューラルネットワークが簡単に(第74回):適応による軌道予測

ニューラルネットワークが簡単に(第74回):適応による軌道予測

本稿では、様々な環境条件に適応可能なマルチエージェントの軌道予測について、かなり効果的な手法を紹介します。
preview
どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ

どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ

本日の議論では、セントルイス連邦準備銀行の広義のドル指数に関する代替日次データとその他のマクロ経済指標の集合を使用して、EURUSDの将来の為替レートを予測しました。残念ながら、データはほぼ完璧な相関関係にあるように見えますが、モデルの精度において際立った向上は実現できず、投資家は代わりに通常の市場相場を使用した方がよい可能性があることを示唆している可能性があります。
preview
母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)

母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)

焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。
preview
Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較

Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較

Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。
preview
ニューラルネットワークが簡単に(第64回):ConserWeightive Behavioral Cloning (CWBC)法

ニューラルネットワークが簡単に(第64回):ConserWeightive Behavioral Cloning (CWBC)法

以前の記事でおこなったテストの結果、訓練された戦略の最適性は、使用する訓練セットに大きく依存するという結論に達しました。この記事では、モデルを訓練するための軌道を選択するための、シンプルかつ効果的な手法を紹介します。
preview
周波数領域でのフィルタリングと特徴抽出

周波数領域でのフィルタリングと特徴抽出

この記事では、予測モデルに有用な独自の特徴を抽出するために周波数領域で表現された時系列にデジタルフィルタを適用する方法を探ります。
preview
時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
ニューラルネットワークが簡単に(第68回):オフライン選好誘導方策最適化

ニューラルネットワークが簡単に(第68回):オフライン選好誘導方策最適化

最初の記事で強化学習を扱って以来、何らかの形で、環境の探索と報酬関数の決定という2つの問題に触れてきました。最近の記事は、オフライン学習における探索の問題に費やされています。今回は、作者が報酬関数を完全に排除したアルゴリズムを紹介したいと思います。
preview
知っておくべきMQL5ウィザードのテクニック(第28回):学習率に関する入門書によるGANの再検討

知っておくべきMQL5ウィザードのテクニック(第28回):学習率に関する入門書によるGANの再検討

学習率(Learning Rate)とは、多くの機械学習アルゴリズムの学習プロセスにおいて、学習目標に向かうステップの大きさのことです。以前の記事で検証したニューラルネットワークの一種である生成的敵対的ネットワーク(GAN: Generative Adversarial Network)のパフォーマンスに、その多くのスケジュールと形式が与える影響を検証します。
preview
知っておくべきMQL5ウィザードのテクニック(第11回):ナンバーウォール

知っておくべきMQL5ウィザードのテクニック(第11回):ナンバーウォール

ナンバーウォールは、リニアシフトバックレジスタの一種で、収束を確認することにより、予測可能な数列を事前にスクリーニングします。これらのアイデアがMQL5でどのように役立つかを見ていきます。
preview
ニューラルネットワークが簡単に(第66回):オフライン学習における探索問題

ニューラルネットワークが簡単に(第66回):オフライン学習における探索問題

モデルは、用意された訓練データセットのデータを使用してオフラインで訓練されます。一定の利点がある反面、環境に関する情報が訓練データセットのサイズに大きく圧縮されてしまうというマイナス面もあります。それが逆に、探求の可能性を狭めています。この記事では、可能な限り多様なデータで訓練データセットを埋めることができる方法について考えます。
preview
母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES

この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。
preview
ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

前回説明した目標条件付き予測符号化(GCPC)法では、将来の状態予測の質が重要な役割を果たします。この記事では、金融市場のような確率的環境における予測品質を大幅に向上させるアルゴリズムを紹介したいとおもいます。
preview
母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)

母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)

第1部では、よく知られた一般的なアルゴリズムである焼きなまし法について説明しました。その長所と短所を徹底的に検討しました。第2部では、アルゴリズムを抜本的に改良し、新たな最適化アルゴリズムである等方的焼きなまし(Simulated Isotropic Annealing、SIA)法を紹介します。
preview
ニューラルネットワークが簡単に(第87回):時系列パッチ

ニューラルネットワークが簡単に(第87回):時系列パッチ

予測は時系列分析において重要な役割を果たします。この新しい記事では、時系列パッチの利点についてお話しします。
preview
母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

この記事では、確率分布の形状を変えることが最適化アルゴリズムの性能に与える影響について検証します。最適化問題の文脈における様々な確率分布の効率を評価するために、スマート頭足類(SC、Smart Cephalopod)テストアルゴリズムを用いた実験をおこないます。