
母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法
この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。

ニューラルネットワークが簡単に(第61回):オフライン強化学習における楽観論の問題
オフライン訓練では、訓練サンプルデータに基づいてエージェントの方策を最適化します。その結果、エージェントは自分の行動に自信を持つことができます。しかし、そのような楽観論は必ずしも正当化されるとは限らず、模型の操作中にリスクを増大させる可能性があります。今日は、こうしたリスクを軽減するための方法の1つを紹介しましょう。

ニューラルネットワークが簡単に(第65回):Distance Weighted Supervised Learning (DWSL)
この記事では、教師あり学習法と強化学習法の交差点で構築された興味深いアルゴリズムに触れます。

母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)
焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。

ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築
転移学習については当連載ですでに何度も言及していますが、これはただの言及でした。この記事では、このギャップを埋めて、転移学習の詳しい調査を提案します。

MQL5の圏論(第3回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト
バッチ正規化とは、ニューラルネットワークのような機械学習アルゴリズムに投入するデータの前処理です。これは、アルゴリズムが使用する活性化の種類を常に意識しながらおこなわれます。そこで、エキスパートアドバイザー(EA)を使って、そのメリットを享受するためのさまざまなアプローチを探ります。

データサイエンスと機械学習(第16回):決定木を見直す
連載「データサイエンスと機械学習」の最新作で、決定木の複雑な世界に飛び込みましょう。戦略的な洞察を求めるトレーダーのために、この記事は包括的な総括として、市場動向の分析において決定木が果たす強力な役割に光を当てています。これらのアルゴリズム木の根と枝を探り、取引の意思決定を強化する可能性を解き明かします。決定木について新たな視点から学び、複雑な金融市場をナビゲートする上で、決定木をどのように味方にできるかを発見しましょう。

母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)
この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。

ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)
強化学習手法を検討するときは常に、環境を効率的に探索するという問題に直面します。この問題を解決すると、多くの場合、アルゴリズムが複雑になり、追加モデルの訓練が必要になります。この記事では、この問題を解決するための別のアプローチを見ていきます。

どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス
シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。

ニューラルネットワークが簡単に(第84回):RevIN (Reversible Normalization)
入力データの前処理がモデル訓練の安定性に大きく寄与することは、すでに広く知られています。オンラインで「生」の入力データを処理するために、バッチ正規化層が頻繁に使用されますが、時には逆の手順が求められる場合もあります。この記事では、この問題を解決するための1つのアプローチについて解説します。

ニューラルネットワークが簡単に(第25部):転移学習の実践
前々回、前回と、ニューラルネットワークのモデルを作成・編集するためのツールを開発しました。いよいよ転移学習技術の利用可能性を実例で評価することになります。

どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ
本日の議論では、セントルイス連邦準備銀行の広義のドル指数に関する代替日次データとその他のマクロ経済指標の集合を使用して、EURUSDの将来の為替レートを予測しました。残念ながら、データはほぼ完璧な相関関係にあるように見えますが、モデルの精度において際立った向上は実現できず、投資家は代わりに通常の市場相場を使用した方がよい可能性があることを示唆している可能性があります。

トレンドフォロー型ボラティリティ予測のための隠れマルコフモデル
隠れマルコフモデル(HMM)は、観測可能な価格変動を分析することで、市場の潜在的な状態を特定する強力な統計手法です。取引においては、市場レジームの変化をモデル化・予測することで、ボラティリティの予測精度を高め、トレンドフォロー戦略の構築に役立ちます。本記事では、HMMをボラティリティのフィルターとして活用し、トレンドフォロー戦略を開発するための一連の手順を紹介します。

MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装
この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。

ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール
アソシエーションルールの検討を続けます。前回の記事では、このタイプの問題の理論的側面について説明しました。この記事では、MQL5を使用したFPGrowthメソッドの実装を紹介します。また、実装したソリューションを実際のデータを使用してテストします。

ニューラルネットワークが簡単に(第41回):階層モデル
この記事では、複雑な機械学習問題を解決するための効果的なアプローチを提供する階層的訓練モデルについて説明します。階層モデルはいくつかのレベルで構成され、それぞれがタスクの異なる側面を担当します。

Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成
この記事では、Pythonでランダムフォレストモデルを作成し、モデルを訓練して、データ前処理をおこなったONNXパイプラインとして保存します。その後、MetaTrader 5ターミナルでモデルを使用します。

ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練
さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES
この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。

ニューラルネットワークが簡単に(第44回):ダイナミクスを意識したスキルの習得
前回は、様々なスキルを学習するアルゴリズムを提供するDIAYN法を紹介しました。習得したスキルはさまざまな仕事に活用できます。しかし、そのようなスキルは予測不可能なこともあり、使いこなすのは難しくなります。この記事では、予測可能なスキルを学習するアルゴリズムについて見ていきます。

データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決
MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)
この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。

母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム
この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。

母集団最適化アルゴリズム:魚群検索(FSS)
魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。

ニューラルネットワークが簡単に(第57回):Stochastic Marginal Actor-Critic (SMAC)
今回は、かなり新しいStochastic Marginal Actor-Critic (SMAC)アルゴリズムを検討します。このアルゴリズムは、エントロピー最大化の枠組みの中で潜在変数方策を構築することができます。

知っておくべきMQL5ウィザードのテクニック(第23回):CNN
畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。

ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善
前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター
PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。

時系列マイニングのためのデータラベル(第4回):ラベルデータを使用した解釈可能性の分解
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。

データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?
畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。

MQL5の圏論(第18回):ナチュラリティスクエア(自然性の四角形)
この記事では、圏論の重要な柱である自然変換を紹介します。一見複雑に見える定義に注目し、次に本連載の「糧」であるボラティリティ予測について例と応用を掘り下げていきます。

時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。

知っておくべきMQL5ウィザードのテクニック(第10回):型破りなRBM
制限ボルツマンマシン(Restrictive Boltzmann Machine、RBM)は、基本的なレベルでは、次元削減による教師なし分類に長けた2層のニューラルネットワークです。その基本原理を採用し、常識にとらわれない方法で設計し直して訓練すれば有用なシグナルフィルタが得られるかどうかを検証します。

知っておくべきMQL5ウィザードのテクニック(第28回):学習率に関する入門書によるGANの再検討
学習率(Learning Rate)とは、多くの機械学習アルゴリズムの学習プロセスにおいて、学習目標に向かうステップの大きさのことです。以前の記事で検証したニューラルネットワークの一種である生成的敵対的ネットワーク(GAN: Generative Adversarial Network)のパフォーマンスに、その多くのスケジュールと形式が与える影響を検証します。